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CLIMATE CHANGE:

Climate change intensifies natural disaster magnitudes. This exacerbation strains
infrastructure resilience, urging advanced vulnerability and risk assessments to devise
fortified engineering solutions.

00
100 N @ wothmerca (=035
W Weston Ewepe (R7+0.13) -02
75 4 turave (RP-0.37)
= v M) -04
£ -06
Py -08
<
w30 W Westem Eurse (R=000)
12 = § Cwmis Recn)
. v a0
03 04 05 06 07 08 09 os 06 07 08 09
S S

Figure 1: Projected areal mean change in return periods for wet and windy (left)
as well as hot and dry (right) disasters.

AGING INFRASTRUCTURE:

Aging infrastructure intensifies natural disaster repercussions due to outdated design
standards, deteriorated materials, and lack of modern resilience measures. These factors
collectively compromise structural integrity, escalate repair and recovery costs, and
pose heightened safety risks.
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Figure 2: Functionality losses of non-deteriorating (left) and deteriorating systems (right).
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CARBON FOOTPRINT:
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contributor to global carbon emissions,
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Figure 3: Direct, indirect (regional) and indirect (global)
carbon emissions of top construction markets.

Assesses a structure’s cultural significance, aesthetics, and adaptability
to future needs.
Key Performance Indicators:
* Significance

* Asthetic

* Economy

* Adaptability

Evaluates safety, durability, and feasibility of interventions under
expected loads and hazards.

Key Performance Indicators:
« Probability of Excedence (PoE)
« Reliability Index (B)
* Remaining Service Life (RSL)
* Material Degradation Rate (MDR)

Assesses impacts on mobility, congestion, and safety during and after
interventions. o

Key Performance Indicators: TRy

« Average Daily Traffic (ADT) [ o—
* Level of Service (LOS) 17
* Travel Time Savings (TTS) 2

* Accident Prediction Rate (APR)

RO A

Evaluates ecological impact, carbon footprint, and sustainability of
intervention options.

Key Performance Indicators:

* Cabon Emissions (CO2 Equivalent)
* Life Cycle Assessment (LCA)
gical Impact A (EIA)
* Noise Impact Analysis (dB)
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PROBLEM

CLIMATE CHANGE:

Climate change intensifies natural disaster magnitudes. This exacerbation strains
infrastructure resilience, urging advanced vulnerability and risk assessments to

devise fortified engineering solutions.
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Figure 1: Projected areal mean change in return periods for wet and windy (left)
as well as hot and dry (right) disasters.
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PROBLEM
AGING INFRASTRUCTURE:

Aging infrastructure intensifies natural disaster repercussions due to
outdated design standards, deteriorated materials, and lack of modern
resilience measures. These factors collectively compromise structural

integrity, escalate repair and recovery costs, and pose heightened safety
risks.
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Figure 2: Functionality losses of non-deteriorating (left) and
deteriorating systems (right).




PROBLEM

CARBON FOOTPRINT:
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contributor to global carbon emissions, .
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effective policy-making. Figure 3: Direct, indirect (regional) and indirect (global)
carbon emissions of top construction markets.
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to future needs.
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Evaluates safety, durability, and feasibility of interventions under
expected loads and hazards.
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Assesses impacts on mobility, congestion, and safety during and after
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STRUCTURAL ENGINEERING ARCHITECTURE
Asset Properties
Substructure
Superstructure
Materials

Data Integration

Substructure
Superstructure
Materials

Architecture
Environmental Engineering KPIs
Structural Engineering KPIs

Traffic Engineering KPIs TRAFFIC ENGINEERING

Multi-Criteria Decision Analysis
(MCDA)

Evaluate options using weighted performance criteria.

Database
Substructure

Superstructure e - AN ‘ B I
Materials s 5. . - l g ! ‘ <
Construction Methods i y S s I I ‘ !
Retrofitting Options W 4 5

Maintenance Strategies

Sensitivity Analysis Comparative Analysis

Assess impact of varying key parameters. Rank alternatives based on performance scores. Recommendations
Present optimal solutions with trade-off insights. R
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STRUCTURAL ENGINEERING

HAZARD MAP M STRATEGY ACCURACY: HIGH @ POTENTIAL PROBLEM: SCOUR

BRIDGE MODEL TENTATIVE SOLUTION: GABIONS
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FRAGILITY CURVES RISK: MEDIUM

component: left pier

‘component: left pler bearing 1 (upstream) ‘component: left abutment bearings ‘component: right abutment bearings
Toft pior EDP: footing settlement, scour: both piers
0

[EDP: tensile strains, scour: left pier EDP: tensile strains, scour: IP: shear displacement, scour: left pier EDP: shear displacement, scour: left pier
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