

ADVANCING EMBODIED CARBON REDUCTION IN INFRASTRUCTURE PROJECTS (BRIDGES)

FINAL PRESENTATION

Total EC

EMBODIED CARBON

DEFINITION

- **Embodied Carbon (EC)** refers to the total greenhouse gas emissions associated with the materials and processes involved in a project's **lifecycle.**
- Critical metric in assessing the **environmental impact** of infrastructure projects

DISTRIBUTION

Construction : 6%-10% Use & M : 8-15% Product : 65%-75%

End-Of-Life : 3-15%

SCOPE : LIFE-CYCLE ASSESSMENT PHASES

Center for Buildings, Infrastructure and Public Space

3

TOOLS AND LIMITATIONS

02 CASE STUDY 1

Carbon Impact Assessment of the Bridge Construction based on Resilience Theory

KEY APPROACHES

INDUSTRIALIZED CONSTRUCTION

le e

Industrialized construction significantly reduces material waste and energy consumption. For instance, industrialized bridge construction can save 56.31% of materials compared to traditional methods

....

 \bullet

It also reduces pollution discharge, with emissions from industrialized construction being 143.4 times lower than cast-in-place construction

 000

ED COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

TRADITIONAL VS INDUSTRIALIZED **CONSTRUCTION**

Source: Carbon Impact Assessment of Bridge Construction based on Resilience Theory

ED COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space

STV

GREEN BUILDING PRACTICES

ED COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

RECYCLING AND WASTE MANAGEMENT

le e

Implementing recycling practices for construction waste helps reduce emissions. For example, recycling concrete and steel from bridge construction can significantly lower the environmental impact

> $\bullet\bullet\bullet\bullet\bullet$

... \bullet \bullet \bullet \bullet Effective waste management strategies reduce the overall carbon footprint by minimizing the need for new materials

...

..

ED COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

STATISTICAL ANALYSIS

MATERIAL IMPACT

The materials used in bridge construction contribute significantly to environmental impact. Reducing this impact involves using sustainable materials and recycling where possible

sources and efficient logistics ENERGY CONSUMPTION

Energy used in construction processes can be minimized by adopting energyefficient practices and machinery

EMISSION REDUCTION

The emissions from vehicles and machinery used in construction can be mitigated through the use of clean energy

ENERGY EFFICIENCY

COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

NEED AND IMPORTANCE OF THIS CASE STUDY 51

Reduction in Material Usage with Industrialized Construction:

Industrialized bridge construction can save 56.31% of materials compared to traditional methods, indicating a significant reduction in the carbon footprint due to material usage

Lower Emissions with Industrialized Methods:

● Industrialized and prefabricated construction results in much lower emissions. The emissions from industrialized construction are 1/143 of the emissions from traditional construction methods. This dramatic reduction contributes to the goal of sustainable construction

Environmental Impact Assessment:

The research model assesses the environmental resilience impact of bridge construction, providing a framework for evaluating the resilience change during project management. This model uses life cycle assessment (LCA) to measure environmental impacts throughout the bridge's lifecycle

Resilience Factor Differences:

● Traditional bridge construction has a quadratic parabola resilience, while industrialized construction has a nonisosceles trapezoid resilience. This difference in resilience shapes the environmental impact assesence in the
COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

CONSTRUCTION STAGES AND ENVIRONMENTAL IMPACT

Material Usage:

● The materials used during construction are a major contributor to environmental impact. The emissions caused by manufacturing reinforcement bars, steel, and anti-corrosion coatings account for 93.7% of the total emissions

Concrete Mixing and T-Beam Production:

● Emissions from concrete mixing and T-beam production contribute significantly to the overall carbon footprint. The concrete used for T-beam production accounted for 48.9% of the total emissions in the beam yard

INSTALLATION PROCESS AND ENVIRONMENTAL IMPACT MODEL ANALYSIS OF THE ENTIRE NETWORK BRIDGE

Source: Carbon Impact Assessment of Bridge Construction based on Resilience Theory

ED COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

GENERAL LAYOUT DESCRIPTION OF THE CONSTRUCTION **Sty** PLAN OF EACH DISTRIBUTION STRUCTURE OF TPB

Fig: Tie Luo Ping Bridge, Source: Wikipedia

ED COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

Source: Carbon Impact Assessment of Bridge Construction based on Resilience Theory

GENERAL LAYOUT DESCRIPTION OF THE CONSTRUCTION **Sty** PLAN OF EACH DISTRIBUTION STRUCTURE OF TPB

Source: Carbon Impact Assessment of Bridge Construction based on Resilience Theory

ED COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space

17

PROJECT MODEL RESILIENCE TREND ANALYSIS OF ENVIRONMENTAL IMPACT OF BRIDGES

Source: Carbon Impact Assessment of Bridge Construction based on Resilience Theory

PROJECT MODEL RESILIENCE TREND ANALYSIS OF ENVIRONMENTAL IMPACT OF BRIDGES

Table 2. Statistical table of environmental impact data of bridges

Source: Carbon Impact Assessment of Bridge Construction based on Resilience Theory

COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space **Sty**

03 CASE STUDY 2

An Environmental Comparison Of Bridge Forms

A Comparative Analysis of 3 Bridge Types, Costs, and Environmental Footprints

Table 1. Bridge Type vs Cost and Env. Burden

Conclusion: The preliminary environmental impact of a bridge is expected to correlate closely with its associated cost.

- Case study: major creek crossing in the Middle East
- Material quantities and cost estimates prepared for **three bridge options**
- Concrete cantilever, concrete cable stay and steel arch are considered
- Estimate of **embodied energy and CO2 emissions** are assessed from the principal material quantities
- A bridge that utilizes **fewer materials** and employs a **repetitive construction** technique is expected to have a l**ower embodied energy**, resulting in **minimized** CO2 emissions.

Collings, D. (2006)

ED COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space

CASE STUDY 2

Case study by David Collins, Tech. Director, Benaim, London UK

- **Moderate length river bridge**
- River width of \approx 120 meters and approach spans of 66 meters on each side
- The total deck area was ≈ 4300 m²
- This configuration enables the evaluation of both the **shorter span structures** on the approaches and the **main river span**
- Embedded **energy** and **CO2 emission** during **construction** phase
- 4 types: Viaduct, Girder, tied arch and cable stayed
- **Material:** Steel, Concrete, Steel-Concrete composite
- **Data:** From actual projects and estimates

ED COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space

Collings, D. (2006)

22

GRAPHICAL REPRESENTATION

Graph 1. Embodied energy during construction (GJ/m2) for various structural forms and materials

Graph 2. CO2 emission range (kg/t) for various structural forms and materials

Embodied Energy During Construction (GJ/m²) For Various Structural Forms and Materials

- The **maximum** and **minimum** values were employed to delineate the **probable range** of **embodied energy** and CO2 for **each structural form** and **material**.
- **Lowest** short-span concrete structure
- **Highest** all-steel or composite, longer span structure
- **Shorter-span** structures **insignificant** difference between concrete and steel-concrete composite

Table 3. Embodied energy during construction (GJ/m2) for various structural forms and materials

Collings, D. (2006)

ED COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

CASE STUDY 2

CO2 Emission During Construction (kg/m2) For Sty **Various Structural Forms and Materials**

CO2emission during construction (kg/m2) for variousstructural forms and materials

Collings, D. (2006)

Graph 3.Table 4. CO2 emission during construction (kg/m2) for various structural forms and materials

ED COLUMBIA CBIPS

Center for Buildings, Infrastructure and Public Space

CASE STUDY 2

CASE STUDY 2

Variation In Embodied Energy With Span And Material Type

- The embodied energy vs **span** and **material** type.
- **Greater** embodied energy in **longer spans**.
- Variation of **form and material** can have a significant **effect** on the environmental burden.
- **well-designed longer-span** bridge that incorporates local materials, recycled steel, and cement produced through the dry process, with some cement replacement, can approach the environmental friendliness of a **shorter-span** structure with no considerations
- **Architectural solutions** tend to impose a **higher** environmental burden across **all** materials.

Collings, D. (2006)

CONCLUSION

- More **architectural** forms **higher environmental burden**, reflected in the cost.
- For **shorter** span **little difference** between the popular precast concrete beam and the steel girder with a concrete slab.
- For **longer spans concrete** fridges are marginally better than steel—concrete composites or all-steel structures.
- Choosing **materials wisely** is crucial to lowering the environmental impact of bridges. For example, using concrete for compression elements like towers and arches, and steel for tension elements like ties, proves effective.
- While CO2 emissions during the bridge's life from **repair and maintenance** are slightly **higher**, they are **similar** to those during **construction**. Designers can reduce environmental impact by opting for **minimal material** structures based on proven principles. To make a more significant difference, designers should actively choose materials from l**ow-energy production processes and local sources**.
- To further minimize ongoing environmental impact, follow good practices like **reducing joints and avoiding highenergy products** like paints and plastics that need frequent replacement.

Collings, D. (2006)

04 CASE STUDY 3

Assessment of Embodied Carbon in a Tied Arch Bridge

NEED AND IMPORTANCE OF THIS CASE STUDY 5

Global Impact and Targets:

● The built environment and **construction sector contribute 39% of global carbon emissions** and **50% of raw material use**.

Bridge Infrastructure Challenges:

● Bridges, crucial for modern infrastructure, often use **carbon-intensive materials like steel and concrete**. Sustainable design practices are crucial to mitigate environmental impact.

Focus on Steel Tied-Arch Bridges:

● The research centers on steel tied-arch bridges, emphasizing a specific case study to assess the total embodied carbon in an optimized superstructure.

Net-Zero Design Strategies:

● Achieving net-zero bridge design requires **minimizing material use**, especially carbon-intensive materials, and **offsetting remaining embodied carbon through complementary techniques**.

CASE STUDY 3

Liu, C. (2023)

TIED-ARCH BRIDGES IN EUROPE

Tied-Arch Bridges in Europe:

Tied-arch bridges are prevalent in Europe, with 57.9% constructed since 2000.

Database Analysis and Categorization:

Approximately **60%** of these bridges serve as **road bridges, with spans ranging from 26m to 285m.**

Evolution and Popularity:

The first steel tied-arch bridge in Europe was completed in 1904, and their numbers steadily increased until 1988, with a **significant surge from 1999 to 2014**.

Liu, C. (2023)

Figure 11 - **Bicycle bridge at Tessenderlo, Belgium** Anker. (n.d.). Bicycle Bridge Tessenderlo, Belgium. Anker.

CASE STUDY 3

Sty

Sty EMBODIED IMPACT - A CASE STUDY

Optimization and Mass Reduction:

Conducted a parametric study on individual components (main girders, stiffeners, arch, bracing, and hangers) of a steel tied-arch bridge, resulting in an optimized design with a total steel mass of 3452 tonne

Carbon Neutral Superstructure Strategies:

Explored achieving carbon neutrality by using renewable energy for EAF steel production, potentially saving over 673 t CO2 eq. SSAB's innovations, including the world's first fossil-free steel and SSAB Zero, offer carbon emissions-free options.

Figure 12 - **Tied-Arch Bridge components** Allan, J (2022), Operational and embodied emissions associated with urban neighbourhood densification strategies

Liu, C. (2023)

CASE STUDY 3

EMBODIED IMPACT - A CASE STUDY

MATERIALS:

Concrete Emission Reduction:

● Use alternative cementitious materials to decrease concrete GWP by over 60%, with options like Portland fly ash cement and blast furnace cement

Innovative Carbon Utilization Technologies:

Explore CarbiCrete (carbicrete.com) and CarbonCure (carboncure.com) for carbon-neutral groundwork, where CarbiCrete, being carbon-negative, removes more CO2 (e.g., 998 kg emitted, 1,000 kg removed), and CarbonCure reduces cement use by 7%, saving 15 kg CO2 eq. /m3.

Concrete Carbon Sequestration:

● Implement techniques like CarbiCrete and CarbonCure for active CO2 sequestration and mineralization in

Center for Buildings, Infrastructure and Public Space

Table 6 - **Bridge components and their material specifications**

Liu, C. (2023)

CONCLUSION

Carbon Neutrality Focus:

● Addressing global warming, the paper targets tangible carbon neutrality actions in modern infrastructure, specifically steel tied-arch bridges.

Optimization for Carbon Reduction:

● Optimizing design focuses on **minimizing steel mass**, **exploring materials**, and alternative techniques, showing potential GWP reductions.

Assessing Global Warming Potential:

● Embodied carbon calculations post-optimization assess the design's global warming potential, considering **green electricity, lower carbon steel, and cement alternatives**.

SSAB Zero Impact:

● SSAB Zero usage can **reduce GWP by 40.4%**, and incorporating SSAB plates for closed sections **achieves an impressive 94% reduction** in GWP.

CASE STUDY 3

Liu, C. (2023)

05 CASE STUDY 4

Gordie Howe Cable Stayed Bridge

GORDIE HOWE BRIDGE

STY

CANADIAN BRIDGE TOWER DIMENSIONS

- Canadian Bridge Tower 220 M High
- Elevator (Kyle bar net) 200 ft/min
- 5 Platforms bottom level deck, road deck, P5 post tensioning and iron works, and jump form (temporary column moves up the column)
- Takes about 5 min 15 sec to reach top from bottom

 $G_{\rm eff}$ However, $G_{\rm eff}$ is the following (2023).

Figure 14. Construction of Gordie Howe Bridge

CASE STUDY 4

Step 3:

PYLON HEAD

LOWER PYLON

42m/138ft

The upper 80 metres/262 feet of the tower, known as the pylon head, will house the cables that will connect the towers to the bridge and decks

Step 2:

The lower pylon makes up the longest portion of the bridge towers and is composed of 29 different segments. Each segment has an average height of 4.67 metres/15.3 feet and requires 98 cubic metres/128 cubic yards of concrete and 55 tonnes/121,254 pounds of rebar.

> Step 1: Underground work was completed with the construction of the leg support. Each individual leg is supported by six shafts which have been drilled into the bedrock to a depth of 36 metres/118 feet. Each of the shafts is filled with approximately 262,000 litres/69,000 gallons of concrete. The

footings are connected by 1,600 metres/5,250 feet of post tensioning cables to create a firm footing.

Figure 13. Pylon Dimensions

SUPPOR

EG

Sty GORDIE HOWE BRIDGE - Construction Process

- Concrete is pumped from the ground and for rebar is inserted using tower frame.
- First installing the steel box on the upper pylon as anchors for cables
- Passive anchors for cables at deck level and active anchors for cables on the pylon
- Architectural Head to prevent snow or water accumulation

 $G_{\rm eff}$ However, $G_{\rm eff}$ is the following (2023).

Figure 19. Prefabricated Girder panels

ED COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space

CASE STUDY 4

GORDIE HOWE BRIDGE - Construction Process

- Excavation about 30m, 100 ft to find solid rock. Then building footings for the legs, struts between the footings and then leg construction is done.
- For leg construction the same system is used which is combined coming around 140 m (450ft) above the ground. Then upper pylon is constructed where all the cables go.
- The jump form jumps 4.5m at the time and 25 jumps in leg and 22 jumps on the upper pylon. The jump form is 4 storey tall.
- Jump form can hold on 30 workers 10 hours a day and 6 days in a week ironworkers, laborers, and operating engineers.
- Grade 60 Mpa concrete. High yield steel rebar and stainless steel for some areas for durability purposes. Some steel boxes in upper pile.

Figure 15. Steel boxes in upper pylon

 $G_{\rm eff}$ However, $G_{\rm eff}$ is the following (2023).

Figure 16. Erection process

ED COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space

CASE STUDY 4

STV

KEY MATRIX DETERMINING EC FOR BRIDGES

Type of the bridge - Arched / Cable-stayed / Beam / Tied-Arch

Material Use - Concrete / Steel / Composite / Recycled Materials

Material Waste - Waste Management Method Data

Intensity of use of equipment - Impact on EC due to Precasting

EMBODIED CARBON FACTOR - REFERENCE

Table 7 - Suggested embodied carbon factors (ECFA1–A3,i) for common secondary bridge elements

Net Zero Group. (2023, July). Carbon Calculation Guide for Bridges

EMBODIED CARBON FACTOR - REFERENCE

Table 7 - Suggested embodied carbon factors (ECFA1–A3,i) for common secondary bridge elements

Net Zero Group. (2023, July). Carbon Calculation Guide for Bridges

EMBODIED CARBON FACTOR - REFERENCE

Table 8 - Mode of transport carbon factors

Net Zero Group. (2023, July). Carbon Calculation Guide for Bridges

COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space **sty**

EMBODIED CARBON FACTOR

Table 11. GORDIE HOWE BRIDGE Calculations

Net Zero Group. (2023, July). Carbon Calculation Guide for Bridges

REFERENCES

- 1. Sustainable Stanford. (2022). Embodied Carbon Analysis 11038 Stanford Embodied Carbon. [Retrieved November 10, 2022, from Sustainable Stanford](https://sustainable.stanford.edu/sites/g/files/sbiybj26701/files/media/file/stanford-embodied-carbon-report_final.pdf)
- 2. Net Zero Group. (2023, July). Carbon Calculation Guide for Bridges DRAFT. Retrieved from [https://static1.squarespace.com/static/625d48dc5d245d769319eca2/t/64a31f4db69ce362](https://static1.squarespace.com/static/625d48dc5d245d769319eca2/t/64a31f4db69ce3622388a86f/1688411983416/Carbon+Calculation+Guide+for+Bridges_DRAFT_v0.1.pdf) [2388a86f/1688411983416/Carbon+Calculation+Guide+for+Bridges_DRAFT_v0.1.pdf](https://static1.squarespace.com/static/625d48dc5d245d769319eca2/t/64a31f4db69ce3622388a86f/1688411983416/Carbon+Calculation+Guide+for+Bridges_DRAFT_v0.1.pdf)
- 3. Carbon Impact Assessment based on Resilence Theory. Retrieved on March 2024, from Research Gate

https://www.researchgate.net/publication/373349620_CARBON_IMPACT_ASSESSMENT_OF _BRIDGE_CONSTRUCTION_BASED_ON_RESILIENCE_THEORY