
ENERGY AND TECHNOLOGY

Community-Based Resilience Solutions

Mathias Berthelot Cassandra Pin Sophie Chen

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space Playground at Rockaway Community Park. Adapted from photo by Esto/Albert Vecerka

OUTLINE

1. Executive Summary	7. Integr
2. Infrastructure Resilience Challenges	8. Comp
3. Community-based Solutions	9. Cost E
4. The Rockaways and Response	10. Recor
5. Microgrid Basics	11. Q&A
6. Funding Sources and Financing	

- grating Resilience Assets
- parable Projects
- Estimate and Insights
- mmendations and Next Steps

EXECUTIVE SUMMARY

This project explores the concept of community-based infrastructure solutions in response to growing resilience needs and the traditional top-down approach to infrastructure funding.

Through a case study of a potential microgrid in the Rockaways, we demonstrate how community-driven initiatives can effectively address the challenges faced by underserved communities.

INFRASTRUCTURE RESILIENCE CHALLENGES

CLIMATE CHANGE

Increasing frequency and severity of extreme weather events and natural disasters

FUNDING

- ~50% of BIL/IIJA still unspent
- **33%** of IRA energy and climate funding unspent
- Unclear how much of Biden appropriations are shielded from repeal, but further funding increases are unlikely

Energy and Technology

INFRASTRUCTURE CONDITION AND CAPACITY

60% of U.S. distribution lines are surpassing their 50-year life expectancy, while demand is forecasted to increase 20-40% by 2050

REGULATION

Interconnection procedures and queuing (FERC), NEPA permitting, and local permitting and zoning all hamper transmission expansion and grid modernization

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

COMMUNITY-BASED SOLUTIONS

LOCAL ENGAGEMENT AND ADVOCACY

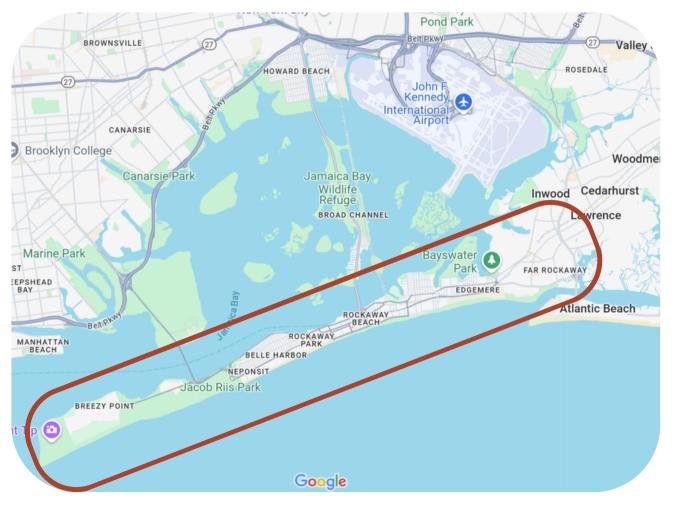
- Communities advocate based on local risks and needs
- Creative, unique solutions tailored to specific areas

PUBLIC-PRIVATE PARTNERSHIPS

• Collaboration with private companies & local governments to secure additional funding

ECONOMIC ACTIVITY

- Training and employing residents in grid maintenance boosts the local economy
- Workforce supports ongoing maintenance & upgrades


SOPHIE CHEN - MATHIAS BERTHELOT - CASSANDRA PIN ENERGY & TECHNOLOGY

THE ROCKAWAYS Case Study

HURRICANE SANDY IMPACTS

- 100,000+ residents affected
- Power outages, critical failures (hospitals, water pumps) lasting for **3 weeks**

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

PROPOSED MICROGRID SOLUTION

GENERATION Distribute local wind & solar

> INTEGRATION Reliability with or without main grid

Photo: WNYC - NOV 12: Destroyed homes after Hurricane Sandy in Breezy Point, Far Rockaway

STORAGE

Stabilize supply off peak or during storms

Transportation

• 2 lines: metro A and S

QS03 BOROUGH OCEAN BAY APARTMENTS: 1,400 UNITS

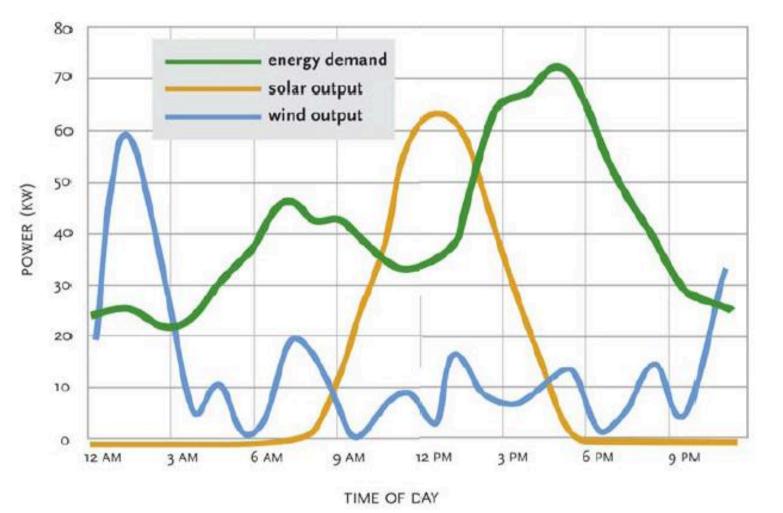
COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

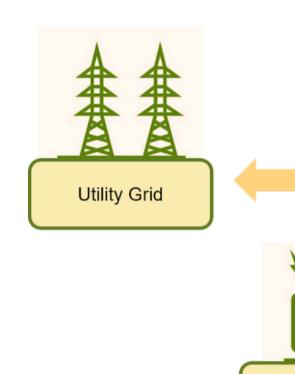
RESPONSE

STAGNATION

- 12 years of neglect on energy outage solutions
- Focus has been on urban forestry, shoreline restoration and flood management, and transit

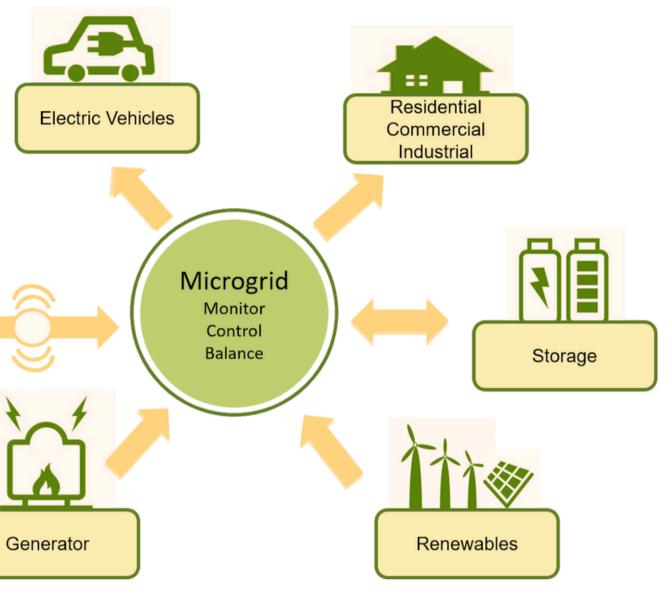
ENGAGEMENT


• Businesses have welcomed investing in a resilient grid, but residents in the area lack awareness and fear uncertainty


NEW DEVELOPMENT

- Uncoordinated, high-density housing developments have emerged since destruction
- Other infrastructure, like parking and schools, is inadequate for increased density

MICROGRID BASICS



MICROGRID

A localized energy grid and control system

- Matches demand by managing intermittent resources (wind, solar), batteries and main grid
- Can seamlessly disconnect from the main grid in outages
- Strategically designed and hardened against storm impacts
- Prioritizes critical loads during emergencies

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

FUNDING SOURCES AND FINANCING

PUBLIC-PRIVATE PARTNERSHIPS

Long Island Power Authority Other utilities working for CLCPA compliance Grid technology companies Private developers

STATE AND CITY FUNDING

NYSERDA and NY Power Authority (NYPA) NYCEDC and Mayor's Office of Resiliency

Green bond financing

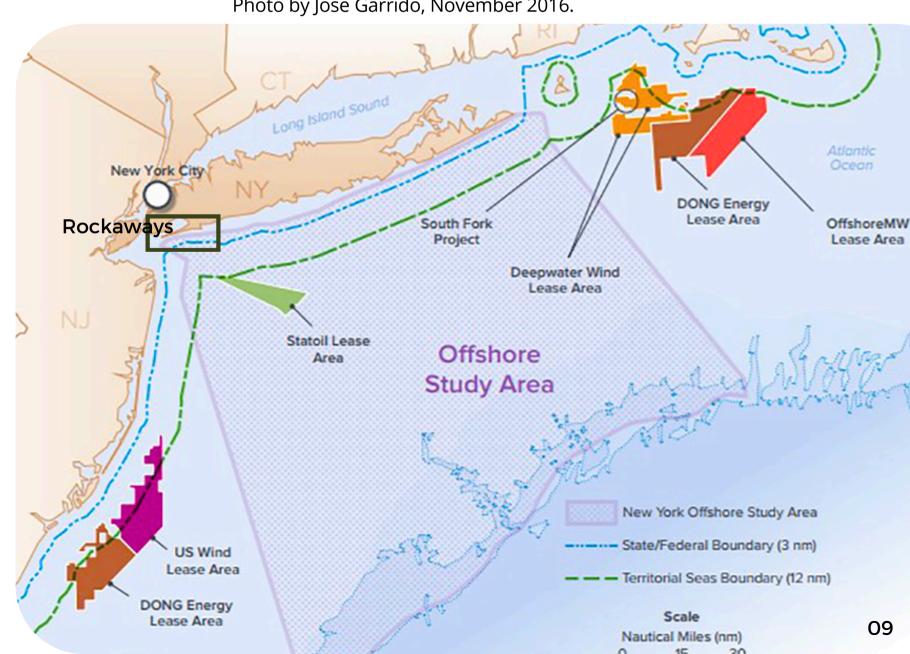
FEDERAL FUNDING

Previous DOE Microgrid Funding, FEMA, HUD Current tax credits for clean generation, storage, and microgrid control (up to 30% of investment + 20% for a low-income zone)

REVENUE STREAMS

Net metering: sell excess power to main grid Peak shaving: sell net demand management by battery system Ancillary services: sell frequency regulation and voltage support Avoid losses associated with grid disruptions

INTEGRATING RESILIENCE ASSETS


OFFSHORE WIND INTEGRATION

- Grant integration and control of new wind power assets to Rockaways microgrid
- Direct peak shaving revenue towards maintenance

MTA A-LINE REPAIR AND RECONSTRUCTION

• Install medium voltage distribution cables along the fortified aboveground viaducts

"A" train crossing the North Channel Bridge towards Hamilton Beach. Photo by Jose Garrido, November 2016.

INTEGRATING RESILIENCE ASSETS Offshore Wind

Statoil

- Statoil Wind US wins New York offshore wind lease sale across from Rockaways
- USD 42.5 million for rights to build an offshore wind farm at the 79,350-acre area.

Ørsted

- 25 year offshore wind farm lease with a capacity of 880MW. Operational by 2024.
- \$700 million invested.
- They are also involved with Revolution Wind to power Rhode Island and Connecticut.

SOPHIE CHEN - MATHIAS BERTHELOT - CASSANDRA PIN ENERGY & TECHNOLOGY

Sunrise project New York, US. Image courtesy of Neil Stevenson

COMPARABLE PROJECTS Brooklyn Microgrid

Lo3 Energy

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

Impetus: Park Slope residents wanted to trade rooftop solar energy

- existing ConEd grid)

- facilities like hospitals
- "Simple and successful"

Resilience? monitoring? longevity?

Blockchain-based trading on "virtual grid" (using

Partnership with Siemens and Lo3 Energy

• Smart meters installed in participating housing

Small physical grid installed for essential

<u>Regulatory sandbox status</u>

Planned battery storage

COST ESTIMATE AND INSIGHTS

Based on NREL "Microgrid Cost Study 2019"

- \$/MW capacity increases with grid complexity (more renewables and higher "soft costs")
- Grid control units and smart devices are becoming more affordable
- Utility-scale microgrids connect at medium voltage level, increasing infrastructure costs

<u>Microgrid with DERs: Cost Estimate by Scale</u>

Residential\$10,000 - \$50,000/MWCommunity Microgrid\$500,000 - \$2 million/MWLarge Commercial/Utility-Scale\$2-4.5 million/MW

Estimated Rockaways utility-scale demand: 100 MW

Rockaways Microgrid cost estimate: \$250-500 million, depending on extent and design

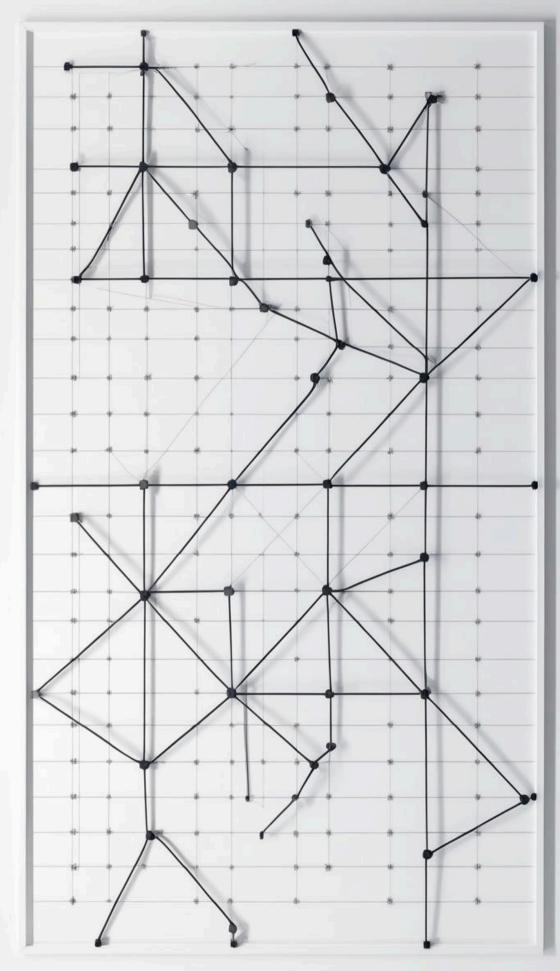
COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

ables and higher "soft costs") ordable reasing infrastructure costs

DEMONSTRATIVE MODELING AND SIMULATION

Model potential climate impacts and a microgrid system Make a compelling case for implementation, including cost savings and revenue structures

COMMUNITY ENGAGEMENT


Formation of a named entity to combat lack of awareness Partnership with a firm with subject matter expertise to increase accountability

WIDER ADVOCACY

Explore avenues for buy-in from larger agencies and private entities

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

SOPHIE CHEN - MATHIAS BERTHELOT - CASSANDRA PIN ENERGY & TECHNOLOGY

CASSANDRA PIN cap2296@columbia.edu

sac2271@columbia.edu

MATHIAS BERTHELOT

mb5324@columbia.edu

REFERENCES

1. Energy Consortium. (n.d.). An introduction to microgrids: Benefits, components, and applications for a sustainable energy future. Retrieved from https://energyconsortium.org/an-introduction-to-microgrids-benefits-componentsand-applications-for-a-sustainable-energy-future/ 2. Generator Source. (n.d.). Microgrid fundamentals: The role generators play. Retrieved from https://www.generatorsource.com/Articles/Other-Information/Microgrid-Fundamentals-Role-Generators-Play.aspx 3. Reilly, J. (2020). Microgrids. U.S. Department of Energy. Retrieved from https://www.energy.gov/sites/default/files/2020/10/f80/1_Reillly-Microgrids.pdf 4. Associated Press. (2024). Superstorm Sandy disparities. Retrieved from https://apnews.com/article/superstorm-sandy-disparities-042c69728c10e92837360b8b31704eac 5. Public Works Partners. (n.d.). Reflecting on Hurricane Sandy's legacy: The resilience and revival of the Rockaways. Retrieved from https://publicworkspartners.com/reflecting-on-hurricane-sandys-legacy-theresilience-and-revival-of-the-rockaways/ 6. WNYC. (n.d.). Recovery in the Rockaways a year after Sandy. Retrieved from https://www.wnyc.org/story/recovery-rockaways-year-after-sandy/ 7. Climate Central. (n.d.). Microgrids: A way to keep the Rockaways' lights on in the next storm. Retrieved from https://www.climatecentral.org/news/microgrids-a-wayto-keep-rockaways-lights-on-in-next-storm-16652

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

https://www.nrel.gov/docs/fy19osti/72586.pdf

- 8. National Renewable Energy Laboratory. (2023). Wind newsletter. Retrieved from
- https://www.nrel.gov/wind/newsletter-202303.html
- 9. University of Rhode Island. (n.d.). Why is the United States East Coast an optimal location for offshore wind? Retrieved from https://web.uri.edu/offshore-renewable-energy/ate/why-is-theunited-states-east-coast-an-optimal-location-for-offshore-wind/
- 10. U.S. Department of Energy. (n.d.). Retrieved from https://www.energy.gov/
- 11. National Renewable Energy Laboratory. (n.d.). Retrieved from https://www.nrel.gov/
- 12. New York City Economic Development Corporation. (n.d.). Retrieved from https://edc.nyc/
- 13. IEEE Spectrum. (n.d.). Alphabets Makani tests wind energy kites in the North Sea. Retrieved
- from https://spectrum.ieee.org/alphabets-makani-tests-wind-energy-kites-in-the-north-sea
- 14. BBC News. (2019). Orkney and Shetland wind energy. Retrieved from
- https://www.bbc.com/news/uk-scotland-north-east-orkney-shetland-49796147
- 15. National Renewable Energy Laboratory. (2019). Microgrid cost study. Retrieved from
- 16. ABC7NY. (2024). Elizabeth community garden in Little Italy given eviction notice for affordable housing. Retrieved from https://abc7ny.com/post/elizabeth-community-garden-little-italygiven-eviction-notice-affordable-housing/15386776/
- 17. The Architect's Newspaper. (2024). Rockaways voices approach resiliency design. Retrieved from https://www.archpaper.com/2024/08/rockaways-voices-approach-resiliency-design/.