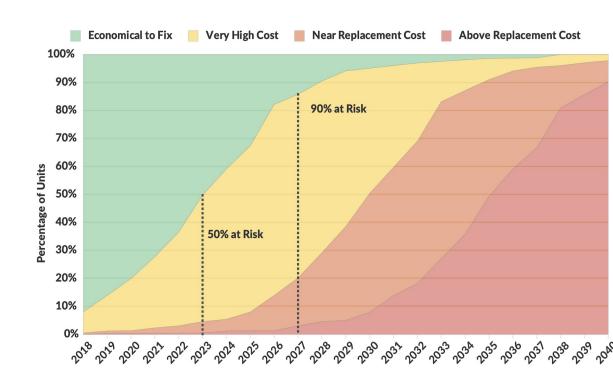
Center for Buildings, Infrastructure and Public Space New York City Housing Authority Study

Under the guidance of Prof. Feniosky Peña-Mora and Adjunct Assoc. Prof. Rick Bell

Research Team: Vignesh Nandha, Pavan Kantharaj, Daili Peng, Haihang Gui, Felipe Paniagua, Misha Mohan, Rain Li, Vijay Mallangi, Tanushri Ganesh

Background and Introduction

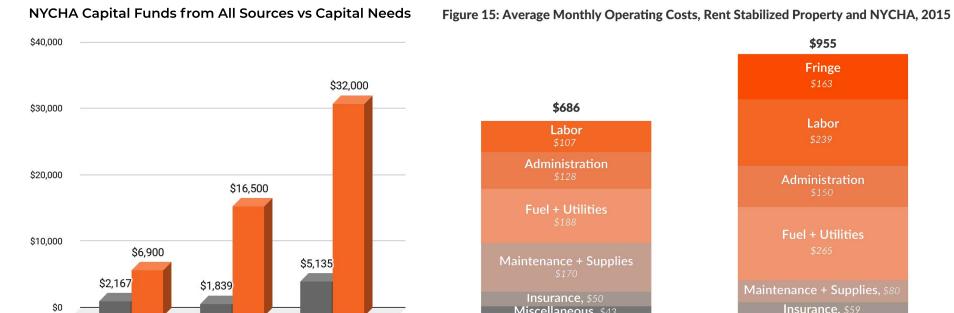
A Snapshot of



- ◆ Provides affordable housing for 583,358¹ residents
 - Through leasing 392,259 Residents
 - Section 8 vouchers 191,099 Residents
- 8% of the rental housing stock in NYC is owned by
- ♦ 60% of NYCHA's buildings were built before 1970s

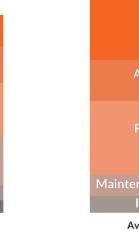
Projection of NYCHA Capital Needs over the next two decades

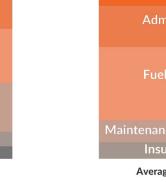
The graph on the right side represents the percentage of deterioration of NYCHA's housing stock for years 2018 -


By 2027 we can see that 90% of the NYCHA units will have a very high cost of repairs. It is evident that the time is of essence and greater the delay more expensive it will become to fix the issues.

Note: Assumes construction costs and replacement costs grow at 4 percent annually and capital needs grow at an average annual rate of 10.6 percent,

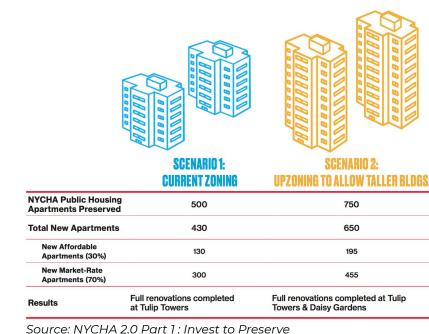
Sources: CBC staff analysis of New York City Housing Authority, 2017 Physical Needs Assessment and Development Data Book 2017 (December 2017).


Financial Predicament of NYCHA

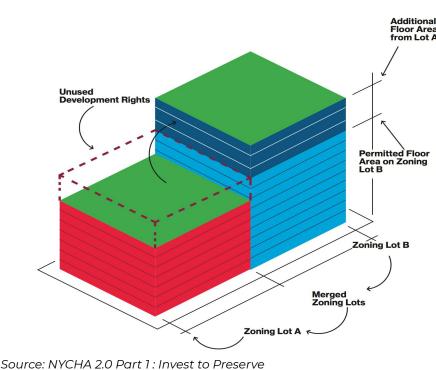


Source:- Budget for FY 2018 And The Four Year Financial Plan FY

Average Rent Stabilized Unit

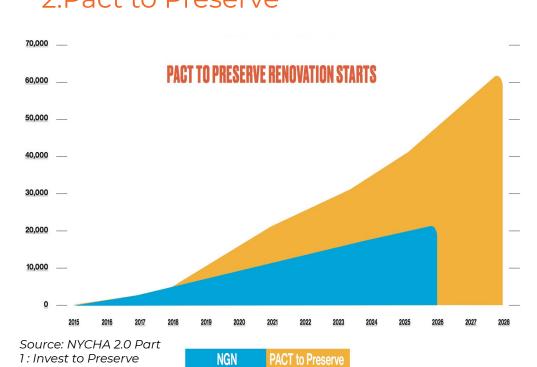

Average NYCHA Unit 2016); New York City Rent Guidelines Board, 2017 Income and Expense Study (March 2017).

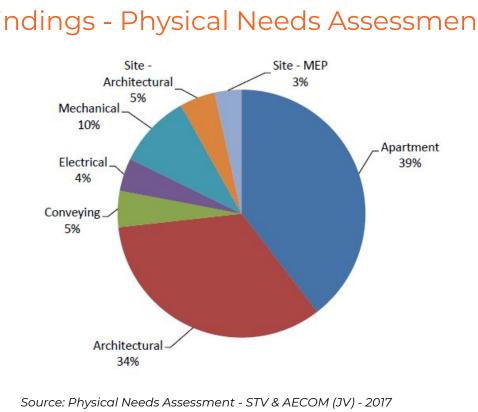
Current Status


NextGen NYCHA

- ❖ In May 2015, Mayor Bill de Blasio announced NextGeneration NYCHA
- improve NYCHA housing and operations

1.Build to Preserve NEW CONSTRUCTION AT TULIP TOWERS SITES


3.Transfer to Preserve


NYCHA 2.0

- ♦ 10-year plan to resolve \$24 billion need for vital repairs
- Renovations of 175,000 units
- Objectives -
 - ➤ Pact to Preserve (RAD and
 - Build to Preserve > Transfer to Preserve

2.Pact to Preserve

Findings - Physical Needs Assessment

Need 1: Apartments

1. Kitchen renovation

- Energy saving refrigerator (Haier) Extra cost for changing refrigerator: -\$214,914 (2193 apartments)
- ❖ Total electricity cost saved: \$92,720
- Payback period of 3 years

2. Bathroom renovation

Integrated bathroom design

Extra Cost: \$95 per system Water saving: 1.3 gallons per toilet per day, about 474 gallons annually by an average of 2.57 users

3. Piping system renovation

Hot water insulation

- Reduce heat loss and can raise Source: Field Study of the AQUS Water Saving Device water temperature 2-4 degrees Fahrenheit
- Material Cost: \$1.2 \$3.5 per ft Energy Saving: \$9.5¹ million in
- total for NYCHA ¹ Physical Needs Assessment (PNA) 2017: Potential

CD-226SD \$350-600 \$800-1200 472 kWh 219 kWh 551 kWh \$92.07 \$78.87 \$36.59

,				,	_
Name	Days of install	Meter read (gallons)	Number of persons using toilet	Avg daily water saving(g al)	Avg daily water saving per person(g al)
TS	29	60	4	2.07	0.52
BC	53	100	2	1.89	0.94
ES	50	200	4	4.00	1.00
JC	83	40	2	0.48	0.24
MB	87	20	2	0.23	0.11
AW	91	40	2	0.44	0.22
JS	70	140	2	2.00	1.00

Savings	Energy (MMBtu/year)	Money (\$000/year)					
Hot water & Steam pipes insulation	1,206,614	9,519					
ource: Physical Needs Assessment - STV & AECOM (JV) - 2017							

age 6.61 85.71 2.57 1.3 0.58

Contrast between 1965 and now in a typical NYCHA Apartment

Need 2: Architectural

Roofs at NYCHA - Disadvantages

Coal Tar Roofs

- Warm roofs lead to:
- > Increase in building temperature
- > Change in wind patterns > Loss of roof life due to
- > High heating and cooling expenses

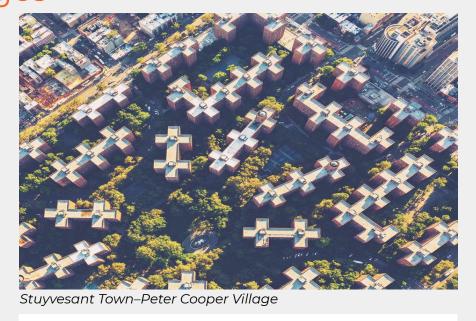
expansion and contraction

❖ Total roof area (all NYCHA developments): 2.7 Million Sq. Ft equivalent to built up area of Empire State Building

Figure 5: Comparison of average roof surface temperatures

of buildings with conventional (non-green) and green roofs in Hillsborough, California, in the fall of 2008

Green Roof 1 – Temperature (measured in soil)


Green Roof 2 – Temperature (measured in soil)

Southern California

Conventional light grey roof temperature (measured on surface)

Source:NRDC Report June 2012 R:12-06-B, Looking Up: How Green Roofs and Cool Roofs Can Reduce Energy Use,

Address Climate Change, and Protect Water Resources in

https://www.greenroofs.com/2019/04/18/april-18-2019-new-yor k-passes-mandatory-green-roof-legislation/

Green Roofs

- Depending on the accessibility and structural capacity of roof we either can go with a simpler sedum green roof or a more extensive green roof
- Green roof maintained by community, students, residents
- Partnerships -
- ➤ Green City Force Americorps (Volunteers)
- Brooklyn Grange (Expertise) Chefs, Restaurants (Customers) Royal Waste Services
- (Composting) Mitigates -
- > Urban Heat Island Effect

> Stormwater Runoff > Extend Roof Life

Need 3: Mechanical Systems

NYCHA's 3rd largest need, estimated at \$ 3.1 Billion. Heating plants are the major concern area which require about \$ 1.33 Billion. Around 744 boilers have Remaining Useful Life (RUL) of 5 years or less.

Proposed Solution: Geothermal System for Heating and Cooling

It is a clean and efficient renewable energy technology used to heat and cool a home. It takes advantage of of the earth's interior using it as a source or sink for heat. When cooling, heat is extracted from the building and dissipated into the earth; when heating, heat is extracted from the earth and pumped into the space.

C Geothermal Pre-feasibility Tool from partment of Design and Construction(DDC)	Geothermal System
	Geological and Techr
New York City Housing Authority	Potential Capacity (To
& Baruch Houses Addition	Full System Feasible
AS 0 170 East	Hybrid System Feasil
4W70W ST 120 105 120 9 105 110 8 1 100 110 8 1 100 110 110 110 110	Carbon Footprint Red
	Annual Cost of Carbo
5 / 90 / 15 / 90 / 15 / 90 / 15 / 90 / 15 / 90 / 15 / 90 / 15 / 90 / 90 / 90 / 90 / 90 / 90 / 90 / 9	Annual Potential Savi System (\$)
79GAR 11 80 877	Projected Incrementa Credit (Years)
Baruch House Anderson 729	Projected Incrementa Carbon Credit (Years)
OELANCEY ST 188 298 12 298 12 298 12 298 298 298 298 298 298 298 298 298 29	NOTE: The City's critic regulated by the New ' process of promulgati feet in the borough of depth of 100 feet in ar send written notificati Review, Bureau of Wat NY 11368-4100

Social Benefits:

- LEED Certification for geothermal system, translates to better health of the building occupants
- Reduces stress on the community due to budget cuts and rise in fuel prices in the future

tal Payback with Carbon ical infrastructure, such as water tunnels, shafts, or appurtenant facilities are

ating rules to require that any boring, drilling or excavation to a depth of 50 f the Bronx or north of 135th Street in the borough of Manhattan or to a any other location / borough in New York City first be reported to DEP. Please ation of intention to drill or excavate to: Chief of Site Connection and Plan Financing: NEW YORK

\$26.5 M for cutting edge

efficient technologies

Need 4: Conveying System

Reported Malfunctions

- ❖ 70 East 108th Street Elevator breakdown at least four times a
- Brooklyn 177 Sands Street Elevators out of service for 6 days
- ♦ 400,000-plus public housing residents at greater risk of elevator accidents.

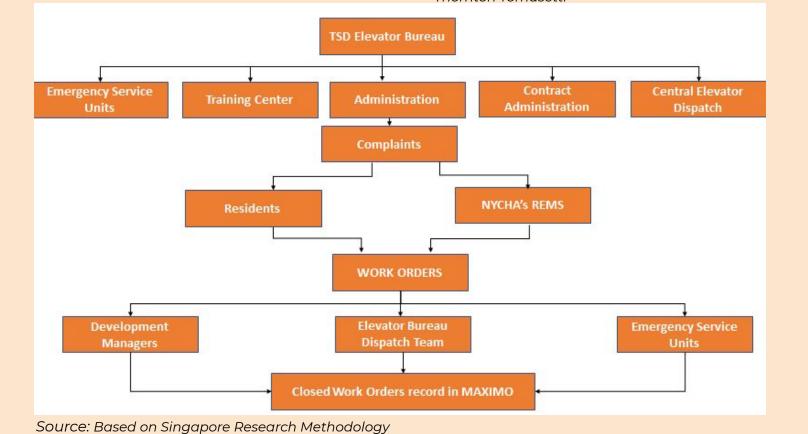
Audit Report - Findings

- Response to reported outages needs improvement
- consistently performed

Preventive Maintenance not

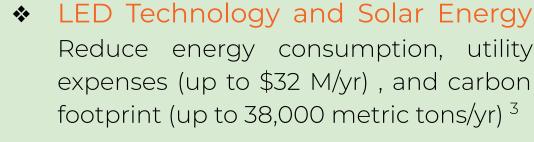
Reporting outages date and performance measure

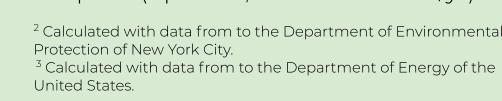
Reasons for Malfunctions


- 10 mechanics inspect 3000 plus elevators - unskilled mechanics
- Training given only for 3 days
- Managerial issues more than technical issues

Social Benefits

- Train unemployed NYCHA residents as mechanics¹
- Mechanics trained at NYCHA Training Center
- Monthly Elevator Feedback
- Encourage staircase use


♦ App + Customer Service

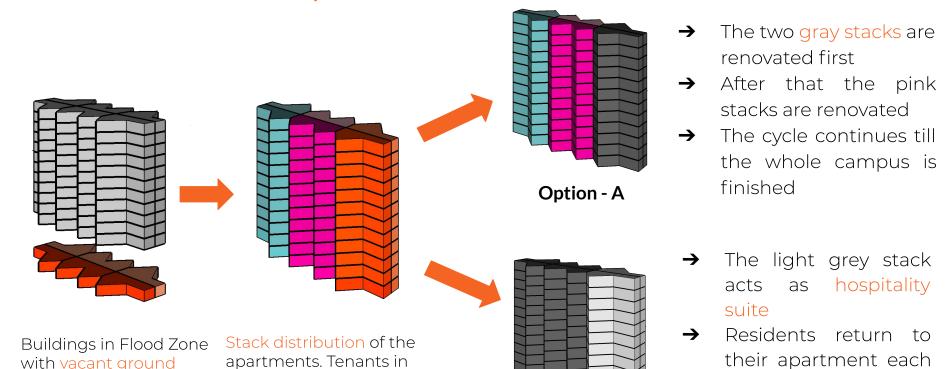

Source: ¹Thomas Z. Scarangello, CEO and Chairman,

Need 5 : Site – Architectural, Mechanical, Electrical

- Floodable Parks and Floodwalls Improve flood resiliency, landscaping, and community development
- * Bioswales and Porous Sidewalks Increase flood resilience (can drain 80,000 gallons/sqft. a year) while embellishing sidewalks ²

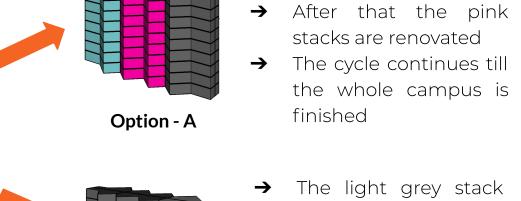
Landscape resilient project: Yanweizhou park in the city of Jinhua City, China. (Landezine, 2015)

Bioswale (Environmental Protection NYC) Queensboro Bridge citibike station.


Logistics and Phasing

SECTION C-C

NYCHA has a vacancy rate of 0.6% and there is a trust deficit between NYCHA and its tenants as the tenants fear they will be displaced during the renovations. We have tried to address these concerns in the proposed solutions.

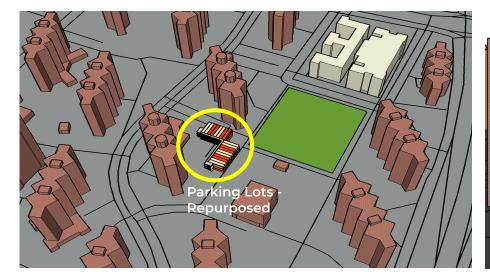

OPTION 1 - Tenant in place

DROP CURB OUTLET-

orange stack moved to

vacant ground floor units

→ The light grey stack acts as hospitality


→ Residents return to their apartment each → Units in the dark grey

renovated first

Option - B stacks are renovated simultaneously

OPTION 2 - Tenant in Onsite Modular housing

- Prefabricated, hence quick installation time
- Can be installed in Parking lots Temporary
- ♦ More modular units, faster the renovation So, Issue of Cost vs Time Units can be shifted to other campuses, so the effective cost comes down
- over time Preserves the social and community networks of the tenants as they are

