Modular Construction

Team Members:

Derry Radityatama | Kenichiro Suzuki | Lin Shi | Ning Wang | Wenjun Gao

Instructors: Prof. Feniosky Peña-Mora | Prof. Rick Bell

Presentation Date: Mar 23, 2022

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

02 **Reversible Building Design**

Concept / Case Study / Challenge

03

05

04 Case Study - Reversible & Relocatable Building

Cost Estimation of Modular Construction

Outline

Construction Material - Reversible & Relocatable Building

01 **RELOCATABLE MODULAR BUILDINGS**

Problems

Case studies

Solutions

Definition and Background

Modular Construction

plant conditions, then assembled on location.

Definition

- **Permanent Modular Construction**
- **Relocatable Modular Construction**

"Relocatable buildings are defined in the International Existing" Building Code as partially or completely assembled buildings constructed and designed to be reused multiple times and transported to different building sites."

2020 Relocatable Modular Construction: https://growthzonesitesprod.azureedge.net/wp-content/uploads/sites/2452/2021/08/MBI-RB-annual-report-2020-FOR-DIGITAL.pdf

Process in which a building is constructed off-site, under controlled

Modular Construction Institute: https://www.modular.org/

Comparison of Permanent Modular Construction (PMC) and Relocatable Buildings (RB)

	Permanent Modular Construction (PMC)	Relocatable Building(RB)
Manufacturing Ratio/Rate of Recycling	60~70%/74%	80~90%/100%
Field Construction	Vertical installation piping, boilers, balcony ceilings, wall for evacuation, welding and bolt joints between modules, fireproofing, and exterior finish.	Electrical/equipment piping connections, bolt joints between modules
Exterior Finish	Installation of temporary scaffolding, exterior finish work	No external finishing work
Foundation	Non-recyclable	Recyclable
Elevator	Site construction	Elevator modularization
Junction between modules	Bolting, welding, wet work	Bolting, dry work
Waterproof	Breathable waterproofing paper on site	Units individually waterproofed
Usability	Permanent residence	Can be moved and reinstalled in another location

RELOCATABLE MODULAR BUILDINGS FOR A SHORT-TERM INTERNATIONAL EVENT: THE PYEONG-CHANG WINTER OLYMPIC GAMES https://meridian-allenpress-com.ezproxy.cul.columbia.edu/jgb/article/15/3/3/444178/RELOCATABLE-MODULAR-BUILDINGS-FOR-A-SHORT-TERM

Definition

Trend

Due to megatrends such as urbanization and ageing of the population, different types of regions are facing different types of demographic challenge.

- Fast-paced demographic change -
- Put a lot of pressure on the environment -

Relocatable Modular Building offer one potential solution

Embodying circularity through usable relocatable modular buildings sg9%2B56%2F3Cg9NH9XLsd6F8Q%3D&pq-origsite=summon

Population growth (annual %, 2015) Factfulness, Straight Line Instinct & World Population https://www.populationpyramid.net/hnp/population-growth/2015/ https://www.athoughtabroad.com/2020/04/19/factfulness-straight-line-instinct-world-population

Background

- https://www.proquest.com/docview/2173504215?accountid=10226&parentSessionId=v2uBhINlm4%2FVlRId3QXmM

Transportation

- road and/or sea transportation
- every time building relocate

Problems

Design

- dimensional restrictions
- aesthetic quality

Regulation

- ownership

different laws and systems across states and countries

Case studies

Wing Aviation, LLC - Christians burg NEST (First Place) Built by BMarko Structures, LLC.

Cole Starnes Abbotsford Temporary Housing Facility Built by Metric Modular.

Residence Modular Hotel for winter Olympic Built by POSCO A&C.

Solutions

Reversible Building Design

Establish common regulations

02 Concept

Case Studies

Challenges

REVERSIBLE BUILDING DESIGN

BUILDINGS AS MATERIALS BANKS

🧩 vito

The influence of BAMB in shaping circularity the construction industry

- Starting date: 1st of September 2015
- 16 partners from 8 European countries

Caroline Henrotay - Brussels Environment

RONNEBY

Co-funded by the Horizon 2020 Framework Programme of the European Union

Aurubis

Materials Value in Commodities Markets vs. Buildings

Hansen, Katja. How BAMB Supports Great Designs, Circular Economy In The Built Environment Launch Of The Bamb Stakeholder Network. Building As Material Banks (BAMB), 2016.

Reversible Building Design Framework

Durmisevic, Elma, Circular Economy in Construction, Design Strategies for Reversible Building, Building As Material Banks (BAMB).

Durmisevic, Elma. Potential of BAMB's Reversible Building Design Tools for the future of sustainable procurement. University of Twente/4D architects. 2019. https://www.bamb2020.eu/wp-content/uploads/2018/09/Durmisevic.pdf. Accessed 3/17/2022

Design Task is to guaranty long term value of buildings by high transformation and reuse potential of buildings and materials on three levels

Durmisevic, Elma. Circular Economy in Construction, Design Strategies for Reversible Building. Building As Material Banks (BAMB),

Demolition = Design Mistake

REVERSIBLE BUILDING DESIGN

Technical Reversibility

Durmisevic, Elma, Circular Economy in Construction, Design Strategies for Reversible Building, Building As Material Banks (BAMB).

Spatial Reversibility

Spatial Reversibility

- Dimension (Building Level)
- Position of Core Elements
- Building Level Disassembly
- Capacity of the core

Dimensions Functional interdependence Position of core elements

Testing Bamb Results Through Prototyping And Pilot Projects - D14 – 4 pilots built + Feedback report, Building As Material Banks (BAMB), 2019.

Technical Reversibility

Testing Bamb Results Through Prototyping And Pilot Projects - D14 – 4 pilots built + Feedback report. Building As Material Banks (BAMB), 2019.

PERFORMANCE CRITERIA

HIERARCHY TECHNICAL DECOMPOSITION

INTERFACES PHYSICAL DECOMPOSITION

- Red representing more permanent part
- Green representing variable/ exchangeable parts of the structure
- Blue representing intermediary between the permanent and variable parts of the structure
- Gray represent replaceable infill elements

Durmisevic, Elma. Circular Economy in Construction, Design Strategies for Reversible Building. Building As Material Banks (BAMB),

CASE STUDIES: Circular Retrofit Lab

Туре	Refurbishment, integration of transformed elements	
Size	size: 180 m ²	
Function	Exhibition and office space	
Location	VUB Campus, Brussels, Belgium	

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wpcontent/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

General aims

A catalyst for circular renovation

Demonstrator for reversible building principles

Collaborate with industry and test case for circular business models

Exemplary for other circular renovation experiments

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wp-content/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

module reconfiguration

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wpcontent/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

INTERNAL TRANSFORMATION WORKING GROUP INTERNAL SOLUTIONS

EXTERNAL TRANSFORMATION DEVELOPMENT PRE-ASSEMBLED FACADE COMPONENTS

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wpcontent/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

STAKEHOLDERS - PARTNERSHIPS

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wp-content/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wp-content/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wpcontent/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

wooden frame

electricity

gypsum fibre board

screws / clips

THE CHOICE OF THE INTERNAL STRATEGY

TYPE 1 HIGHER RATE OF CHANGE

LOCATION: dissemination room (ground floor) and offices (1st floor) CRITERIA:

- (Dis)assembled in a short time
- Reusable building components
- Reversible connection techniques
- Allow multiple (dis)assemblies
 - Flexible space

TYPE 2 HIGH TECHNICAL FLEXIBILITY

LOCATION: technical walls to adjust, adapt, repair and maintain the technical services that are behind, the finishing panels/plinths

CRITERIA:

- Allow multiple reuse
- Allow multiple (dis)assemblies

GIS prototype wall

Preserve good acoustic properties

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wp-content/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

TYPE 1 HIGHER RATE OF CHANGE

TYPE 2 HIGH TECHNICAL FLEXIBILITY

TYPE 3 LOWER RATE OF CHANGE

LOCATION: The partition walls between the two eco-guestrooms **CRITERIA:**

- Comply with acoustic standards
- Comply with fire safety regulation
- Flexible integration of technical functions
- Saint-Gobain Dry-wall (fire rated) BAO Living prefab module

TYPE 4 LOW RATE OF CHANGE

LOCATION: The closed south facade and wall surfaces under the windows CRITERIA:

- a low environmental life cycle impact
- reuse of components at the end of functional life

GROUND FLOOR (AND THE FIRST FLOOR)

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wpcontent/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

GYPROC SAINT-GOBAIN CIRCULAR PROTOTYPE

TYPE 3 INTERMEDIATE RATE OF CHANGE

TYPE 4 LOW RATE OF CHANGE

TYPE 4 LOW RATE OF CHANGE

Conclusion: Circular Retrofit Lab

- Pioneers' work
- Eco system per individual company needs to be defined for circular economy
- Design and engineering tasks for development of Transformable / reversible buildings are very intensive and cost much more time than design of traditional "linear" buildings. Standardisation of design process is needed
- Realization of transformable building requires different approaches to each segment of the building. This requires lot of new product development in the future.
- Industry is more and more aware of the need to change
- Need for business cases
- Experiments scaling opportunities

Paduart, Anne., et al. Circular Retrofit Lab: A Brussels' Renovation Experiment on How to Re-design Existing Buildings Into Circular Buildings. 2018. Building as Material Banks. https://www.bamb2020.eu/wpcontent/uploads/2018/06/Circular_Retrofit_Lab_-_A_Brussels__renovation_experiment_on_how_to_re-design_buildings_into_circular___05.06.18_web-2.pdf. Accessed 3/22/2022

Durmisevic, Elma. PRESENTATIONS & VISITS pilot projects BAMB – 13/10/2017. Building As Material Banks (BAMB), 2017.

Novel Construction Material

03 **Durability**

Benefits

Durability challenge of relocatable and reversible buildings

Current solutions for corrosion prevention

01 Durability challenge of relocatable and reversible buildings

- With the emerging technology of modular construction especially for relocatable buildings and reversible buildings, we could realize locating our modular units in different regions and reusing them multiple times.
- Besides regular locations of application, relocatable & reversible building plays an irreplaceable role in emergency/post disaster relief areas and other swing space. And reversible design of building achieves recycled 60%-90% building materials. The most significant feature is that it could be directly used or reconstructed in extreme environments, such as snow & ice regions, tropical rain forests and marine locations.

Tropical Rain forests

Snow & Ice regions

Marine locations

01 Durability challenge of relocatable and reversible buildings

- significantly.

Steel Corrosion

Freeze-thaw cycle, Carbonation and Chloride ion attack, would accelerate the steel corrosion process and have a negative impact on buildings' durability and cut down their service life

Modular constructions mainly consist of steel which accounts for 60%-70% of total components. The excessive proportion of steel would induce high sensibility of corrosion causing substantive maintenance cost and inevitable negative impact on durability of modular buildings.

Overly Cost

• Total direct cost of corrosion in the United States is approximately \$276 billion per year, which is 3.1% of the nation's gross domestic product (GDP). Construction and infrastructure industry accounts for 18.1% with \$50 billion per year [1].

• Preventing the corrosion of steel in concrete structures subjected to various extreme environments are urgent problems to be solved.

01 Durability challenge of relocatable and reversible buildings

Category	Relocatable buildings' Service life	Permanent / Traditional buildings' Service life
Foundations	50 years	50 years
Building structure	10-15 years	50+ years
Interior finishes	5-10 years	5-10 years
Roofing systems	20 years	20 years
Mechanical systems	20 years	20 years
Electrical and plumbing systems	25 years	25 years

- Relocatable buildings have an average service life of up to 10-15 years [2]. Comparing to permanent or traditional constructions ulletwhich have 50+ years service life, relocatable buildings have a below-average service life because of steel corrosion effect under its changing use circumstances including snow regions, tropical rainforest and marine locations [3].
- Short service life hinder the development and wide application of modular construction. Therefore, it is reasonable to find a way ulletenhancing its capability of corrosion resistance and extending its service life.
- The reversible design of modular construction has similar problems and situations. Both the reuse environment and ulletdeconstruction process will have a negative influence on the service life of its components. In other words, reversible design could be meaningful only when the service life of the building is prolonged and then recycling more building materials can be realized.

02 Current solutions for corrosion prevention

Metal Plating

- Electroplating
- Electroless
- Hot dipping

Corrosion inhibitors

Corrosion inhibitors are chemicals applied to the surface of the metal that react with the metal or the surrounding gases to inhibit or suppress the electrochemical processes that lead to corrosion.

Metal Plating

By controlling the environment, we can prevent or reduce the rate of corrosion. Reduce exposure to moisture while complex alternatives include controlling the oxygen, sulfur, or chlorine levels in the environment around the metal.

Modifying the design / Using stainless steels Adding Nickel or other rare metal into the steel processing progress.

Sacrificial coatings

A coat of a metal that is likely to oxidize is added on the surface of the metal you want to protect.

02 Current solutions for corrosion prevention

Carbon steel & Stainless Steel

Traditional methods greatly increase the cost of construction because of expensive protective materials. For instance, using stainless steel, comparing to the carbon steel, stainless steel has a much higher selling price, which is about 3-4 times as expensive as carbon steel on average.

As a rare metal and main component of stainless steel, nickel is a derivative financial investment tool, and its market price fluctuation is greatly affected by the financial market. With the risk of today's geopolitics, the supply of Nickel decreased dramatically, and the market price skyrocketed.

The current market price of nickel (stainless steel) is nearly 11 times of HRC (carbon steel) and the gap between them is likely to widen further because of geopolitical factors.

Current solutions of steel corrosion prevention could not meet the demand of a cheap and effective method in order to enhance the durability of modular buildings.
03 Novel Construction Material - TDA

Steel protective coating

A fresh coat of **TDA** (**Rubber**) **paints** will enhance the appearance of the metal structure and prevent corrosion because they act as a barrier that prevents the metal's chemical structure from interacting with environmental compounds like water and oxygen that result in corrosion.

Applying a **rubber powder coat** is another effective method of corrosion prevention. Rubber powder can be obtained by cutting TDA into powder with particle size of 0.180-0.425mm. The powder coat applied on the surface of the metal is heated to form a smooth protective film. For metal sheets, rubber powder coat can also help to prevent corrosion to some extent and also hide imperfection caused by contact with the rollers at the mills.

crete (kg/m ³).						
Cement	Sand	Aggregate	Water	R		
	506			0		
337	455	607	135	37		
	405			74		
	Cement	Cement Sand 506 337	Cement Sand Aggregate 506 337 455 607	Cement Sand Aggregate Water 506 337 455 607 135		

• Concrete

The mix proportions of rubber concrete are listed in Table 1, rubber particles was used to replace 0%, 10% and 20% of sand under the same volume. The rubber particles used in the concrete belong to broken rubber powder, particle size is 1-2 mm.

The low-permeability and cracking-resistance characteristics of rubber demonstrate its potential to delay chloride ion penetration and corrosion-induced cracking from the perspective of material properties. Therefore, the goal to extend the service life of modular units is achieved.

Rubber

0 37 74

Foundation

Normally half of the foundation is below the surface water level, which is the most vulnerable part to steel corrosion and the most important element affecting the durability of the structure. Same with the second point, in order to enhance the foundation's resistance of steel corrosion, we use rubber concrete to replace traditional vulnerable construction materials.

04 Benefits

Reduce cost

- Replace stainless steel with carbon steel +TDA powder coating.
- Replace sand under the same volume in cement, 20%-25% capital expenditure would be saved.
- TDA are discarded materials with low price.
- With simple processing of cutting TDA into different sizes, the cheap and flexible construction material gained.

Environmental-Friendly

• Recycle more discarded tires and the global waste tire problem will be resolved.

Enhance the durability

More resisted to steel corrosion and be more stable.Impede the process of chloride ions attacking internal steel bar.

• With TDA, the modular construction service life would possibly extend to 50-60 years.

High project flexibility

Carbon steel with TDA powder coating, a substitution of stainless steel with Nickel reduce the geopolitical risks and financial market impact on modular industry.
It could reduce potential risks from upstream

suppliers and increase its project flexibility.

04 CASE STUDY

Flying Sales Center

Reversible & Relocatable Modular Building

• Location: Fujian, China • Project size: 294 square meter • Function: Real Estate Sales Center

 Project Background: Adjacent to two arterial roads and surrounded by villages in the city • Dilemma/Problem of traditional sales center: Temporary Use vs. High Investment Long waiting time

Owner: Poly Developments and Holdings Design Company: HYP-ARCH Design Consultant Modular Service Provider: Unitised Green Prefab

R&D Period: Oct 2017 - Oct 2019 Fabrication: Start on Oct 5, 2019 Transportation: Nov 12, 2019 Onsite Construction: 5 days (Nov 14 - 18, 2019)

■ 腾讯会议 正在讲话:刘其东【优积科技&璞宿文旅】

Columbia University | CBIPS Research Modular Construction Group Mar 20, 2022

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

Lifting and assembly order:

LIFT BY CRANE

Unit 4 \rightarrow Unit 3 \rightarrow Unit 2 \rightarrow Unit 1 \rightarrow Unit 5 \rightarrow Unit 6 \rightarrow Walkway \rightarrow Sheet Wall

Unitised Green Prefab - Crowne Plaza Hotel Extension at Singapore Changi Airport (Video)

Unitised Green Prefab - Manufacturing Conditions

Factory Location

• Preferred distance between the factory and the site < 300 km

- Productivity
 - Singapore Crowne Plaza Hotel Extension Project 4 finished modules per day (Shanghai, China | 2016)
 - 8 finished modules per day (Langfang, China | Present)
- Automatic Level
 - Unmanned production of steel structure and some components (Present)
 - Challenge: Full automation requires too much investment

• Spreader for Lifting

- Module Design & Installation
 - 10 mm Preserved
 between Modules as
 Expansion Joint
 - Waterproofing Membrane & Seal Strip Laying in Joints

Foundation: 25-35mm Thick Plain Concrete Slab + Steel Pile

• Detach Process

https://zhuanlan.zhihu.com/p/98565937

Disassembly and Assembly Positions

拆装部分防水节点示意图 Disassembly Joints Plan

• Reuse Processes Diagram

Reversible & Relocatable Design Considerations

- ★ Convenience
- ★ Economy
- ★ Maintenance
- Replaceable Outer Cover
 - Look completely new
 - Adaptable to different styles

- 5 mm Seam Reserved between Panels Increase tolerance for dimensional errors Reduce material wear during detachment 0

- Lightweight and Less Deformable Material with High Assembly Rate • Make transportation easier
- - Reduce material loss when reusing 0

Metal

Replace Building Skin

Stone, Ceramic, Concrete Panel

Polycarbonate Panel

Plywood

Cost Estimation of Modular Construction

05

01 Cost Estimation Process

Step 2 : Selecting work items for fabrication

Determine modularization ratio of each work items according to criteria and objectives

Step 4 : Estimating Fabrication cost

Fabrication cost = $W_M \times N_{\frac{MHr}{Ton} for Fab.} \times F_{L_{off-site}} \times F_{P_{off-site}} \times AR_{off-site}$

Step 6 : Estimating Installation cost

Installation cost

 $= W_M \times N_{MHr}_{/_{Ton_{Inst.}}} \times F_{P_{on-site}} \times AR_{on-site}$

Step 8 : Using Monte-Carlo simulation

Project phase and Work items cost

$$=\sum_{i=1}^n C_i + \sum_{j=1}^m C_j \times 1 + (P_j \times I_j)$$

Step 1 : Customizing work items

Define a breakdown of representative work items which account for more than 95% of cumulative ratio of total project cost, when items listed in the order of high cost

*Add additional phase (Fabrication, Transportation and Installation)

Step 3 : Calculating weight of modules

Module weight(W_M) $W_{PAUS} = W_{ET} + W_{SSU} + W_{PU}$ $W_{PARS} = W_{SSR} + W_{PR}$

Step 5 : Estimating Transportation cost

Transportation cost = $W_M \times Dis. \times N_{SUSD}/_{(Km \cdot Ton)_{Trnas.}}$

Step 7 : Quantifying probability and impact of factors

Define Probability of occurrence and Impact of factors as probabilistic distribution *Use Bernoulli distribution for probability and Triangular distribution for impact of factors

02 Break-Even Point

Fixed Cost

- Factory (1 story 30000FT) \$3,389,900
- Manufacturing Equipment(4) \$5,400,000
- Land Preparation \$1,250
- Maintenance \$2,000
- Renting fee to store the onsite module \$5,000
- Road Closure \$10,000

Work Item	Description	Conventional construction (UD\$/S.F)	Modular construction (US\$/S.F)
Project luration	-	20 months	16 months
Division 1.1	Indirect cost	\$19.57	\$13.21
Division 1.2	Construction equipment (crane and trucks)	\$1.17	\$5.38
Division 2	Earth working and	\$7.55	\$7.55
Division 4	Masonry	\$5.4	\$3.06
Division 5	Steel structure framing	\$0.96	\$26.44
Division 6	Millwork and carpentry	\$9.97	\$7.97
Division 7	Roofing and siding	\$12.19	\$14.62
Division 8	Doors and windows	\$7.90	\$6.79
Division 9	Interior finishes	\$24.44	\$21.77
Division 10	Specialties	\$1.31	\$1.12
Division 11	Equipment	\$2.69	\$2.23
Division 12	Furnishings	-	-
Division 13	General building items	-	-
Division 15	Mechanical systems	\$26.31	\$23.67
Division 16	Electrical systems	\$13.69	\$12.32
Division 17	Design fee	\$11.79	\$12.00
Total Cost/S.F		\$195.39/S.F	\$173.31/S.F

Variable Cost

03 Calculation

Fixed Cost (\$)		
Factory (1 story 30000SFT)	\$ 338,9900.00	SP
Manufacturing Equipment (4)	\$ 540,000.00	Vo
Land Preparation	\$ 1,250.00	
Maintenance	\$ 2,000.00	
Renting fee to store the onsite modul	\$ 5,000.00	
Road Closure	\$ 1,000.00	
Total	\$ 3,939,159.00	
Variable Cost (\$/S.F.)		
Indirect cost	\$ 13.21	
Construction Cost	\$ 160.10	
Transportation	\$ 10.63	3
Total	\$ 183.94 49,120),000
Selling Price	\$ 200.00	I
Break Even Point (SFT)	2425277.09	
Break Even Point (Unit/800SFT)	307	

Break Even Units Formula

04 Risks Affecting Cost

(Nabi et,al., 2021)

Table 1. Modular risk factors

Risk ID	Description				
R1	Increased onsite and offsite labor costs				
R2	Increased overhead/site preliminary costs				
R3	Poor supervision efficiency/costs				
R4	Increased transportation costs				
R5	High initial (capital) costs				
R6	Increased installation and assembly costs				
R7	Increased crane and equipment costs				
R8	Increased design and engineering costs				
R9	Increased cost of materials and modules				
R10	Inconsistent cash-flow				
R11	Inability to achieve economy of scale				
R12	Poor construction activity sequencing/management				
R13	Site disruptions and delays				
R14	Inclement weather conditions				
R15	Long transportation lead times				
R16	Increased design and engineering lead times				
R17	High shutdown times due to commissioning and testing				
R18	Decreased capacity of quality control				
R19	Inefficient quality assurance procedures at the manufacturing				
	plant				
R20	Rework				
R21	Lack of experienced and capable manufacturers/suppliers				
R22	Poor aesthetic quality				
R23	Geometric variability of modules				
R24	Safety accidents/injuries				
R25	High workplace congestion				
R26	High exposure to hazards				
R27	Poor safety planning and communication				
R28	Low onsite/offsite productivity				
R29	Inability to incorporate modern technologies				
R30	Limited capacity to handle and lift equipment				
R31	Limited capacity of infrastructure and transportation mode				
R32	Poor site attributes and logistics				
R33	Shortage of stakeholders' experience				
R34	Shortage of skilled and experienced laborers				
R35	Incompliance with environmental standards/regulations				
R36	High material consumption and waste				
R37	Low energy efficiency				
R38	Incompliance with green practices				
R39	Low level of standardization				
R40	Unanticipated field changes				
R41	Late design changes				
R42	Unsuitability of design for modularization				
R43	Low repetitivity in design				
R44	Challenges related to restricted tolerances and interfaces				
R45	Lack of adequate collaboration and communication				
R46	Cultural resistance to change and innovation				
R47	Contractual risks and disputes				
R48	Unsuitability of project delivery method				
R49	Legal and regulatory challenges				
R50	Issues related to project permitting				

	Likeliho		Impact on cost, IC		Cost risk rating, RR _C		
ID	Mean	SD	Mean	SD	Mean	SD	Rank
R1	2.81	1.36	3.40	1.12	10.25	7.03	17
R2	3.29	1.01	2.79	1.09	9.88	5.92	23
R3	2.48	1.15	2.96	1.34	8.27	6.49	37
R4	3.50	1.15	3.44	1.07	12.63	6.58	6
R5	3.54	1.22	3.27	1.27	12.48	7.70	7
R6	2.85	1.20	3.04	1.11	9.38	6.02	30
R7	2.33	1.19	3.23	1.22	8.23	6.55	38
R8	2.98	1.26	2.88	1.31	9.88	7.02	22
R9	3.00	1.07	3.08	1.27	9.81	5.93	26
R10	2.96	1.32	3.17	1.15	10.31	6.97	15
R11	2.83	1.12	3.54	0.92	10.67	5.81	14
R12	3.13	1.14	3.54	1.13	11.88	6.48	10
R13	2.92	1.03	3.27	1.07	9.81	5.29	25
R14	2.81	1.39	3.23	1.24	10.17	7.52	19
R15	2.79	1.17	3.29	1.15	9.85	6.51	24
R16	3.23	1.24	2.98	1.18	10.13	6.51	20
R17 R18	2.40	1.12 1.14	2.90	1.08	7.42 7.52	5.20	44 42
R18	2.25 2.63	1.14	2.96 3.00	1.35 1.09	8.40	5.88 5.25	36
R20	2.58	0.96	3.48	1.09	9.60	5.92	27
R21	2.38	1.30	3.46	1.15	10.04	6.74	21
R22	2.69	1.06	2.77	1.13	8.17	5.22	39
R23	2.69	1.22	3.08	1.07	8.71	5.78	31
R24	2.35	1.23	3.02	1.47	8.02	6.84	40
R25	2.77	1.28	2.85	1.11	8.65	6.16	32
R26	2.19	1.14	2.38	1.21	6.29	6.12	48
R27	2.25	0.89	2.94	1.33	7.00	4.49	45
R28	2.73	1.05	3.27	1.12	9.52	5.66	28
R29	2.52	1.17	2.94	1.28	8.42	6.13	35
R30	2.17	1.04	3.17	1.15	7.52	5.20	43
R31	2.21	0.99	3.00	1.01	6.88	4 18	46
R32	3.75	0.93	3.46	1.11	13.60	6.58	3
R33	3.13	1.33	3.50	0.99	11.69	7.14	11
R34	3.50	1.15	3.92	1.01	14.50	7.11	1
R35	2.06	1.00	2.83	1.36	6.50	5.34	47
R36	2.44	1.11	2.96	1.13	7.79	5.41	41
R37	1.85	0.85	2.19	0.96	4.65	3.83	50
R38	2.15	1.01	2.35	1.02	5.29	3.68	49
R39	2.35	1.18	3.15	1.35	8.46	6.35	34
R40	3.00	1 17	3 58	1 11	11 13	6.25	
R41	3.52	1.17	3.67	1.19	13.69	7.36	2
R42	3.33	1.31	3.75	1.10	13.17	7.46	4
R43 R44	2.92 3.15	1.01 0.99	3.35 3.63	1.02 1.08	10.31 12.00	5.07 6.34	16 9
R44 R45	3.23	1.12	3.52	1.08	12.00	6.81	8
K40	3.15	1.12	3.00	1.05	12.15	7.51	13
R40 R47	3.42	1.18	3.44	1.17	12.65	7.05	5
K48	2.38	1.18	3.08	1.17	8.00	5.52	33
R49	3.04	1.03	3.10	1.08	10.19	6.45	18
R50	2.98	1.12	2.92	1.09	9.44	6.43	29

Table 6. Quantified characteristics of modular risks

Note: SD = standard deviation.

04 Risk Quantitive Analysis

$$\bar{F} = \sum_{i=1}^{50} W_i \times F_i(\text{RR})$$

where Wi = weight of modular risk i;

Fi(RR) = value of fitted cumulative distribution function for modular risk i evaluated at point RR specified by the project team.

The cost saving or growth associated with the adoption of modularization in the project is retrieved such that F(c) = F, where F(c) is the fitted distribution function for the cost performance data.

Major Problems Analyzed

- Shortage of skilled and experienced labors
- Increased Transportation
- Late design changes
- Poor site attributes and logistics
- Unsuitability of design for modularization
- Contractual risks and disputes.

(Nabi et,al., 2021)

Thank you!

Mar 23, 2022

COLUMBIA CBIPS Center for Buildings, Infrastructure and Public Space