Mass Timber Technology

Alejandro Fernandez Senior Project Engineer

MARCH 16, 2022

WITH YOU TODAY...

Alejandro Fernandez

Senior Project Engineer

Structural Engineering

Chicago

- 1. Introduction Why Mass Timber?
- 2. Basics
- 3. River Beech
- 4. Ascent

- 1. Introduction Why Mass Timber?
- 2. Basics
- 3. Procurement and detailing
- 4. Ascent
- 5. Other concepts

WHY MASS TIMBER

Kg of CO₂ created (or stored) to create each tonne of building materials

EMBODIED CARBON CONTRIBUTORS

MEP

Substructure

1. Introduction – Why Mass Timber?

2. Basics

3. River Beech

4. Ascent

Mass Timber Products

Glulam Beams / Columns

CLT Slabs

• Post and Beam

<u>Typical/Optimal Bay Sizes</u>: 20' x 25'

Depth: 24"-30" at beams 9" between beams

CLT Bearing Wall and Slab

<u>Typical/Optimal Bay Sizes</u>: 17' to 20' deck span party wall to party wall <u>Depth</u>: 9" between walls **Thornton Tomasetti**

• Beams and Girders

<u>Typical/Optimal Bay Sizes</u>: 30' x 30'

Depth: 28"-36" at beams 6" between beams

• Hybrid Light Frame & CLT

<u>Typical/Optimal Bay Sizes</u>: 17' to 20' deck span party wall to party wall

Depth: 9" between walls

Point Supported Flat Slab

<u>Typical/Optimal Bay Sizes</u>: 10' x 14' <u>Depth</u>: 9" throughout

Hybrid Steel Frame & CLT

Typical/Optimal Bay Sizes: 30' x 30'

Depth: 24"-33" at beams 6"- 9" between beams

Fire Resistance

- 1. Introduction Why Mass Timber?
- 2. Basics
- 3. River Beech
- 4. Ascent
- 5. Other concepts

Units

Units
Units
Units
Units

160'

PREFAB MODULE A -TYPICAL PREFAB MODULE B -SHEAR

©Perkins+Will

- 1. Introduction Why Mass Timber?
- 2. Basics
- 3. River Beech
- 4. Ascent
- 5. Other concepts

River Beech

Chicago

ASCENT

ASCENT

TYPICAL FLOOR PLANS

TYPICAL PARKING LEVEL

TYPICAL RESIDENTIAL LEVEL

AMENITIES LEVEL (L25)

ASCENT

ASCENT

SLABS (CLT)

BEAMS + COLUMNS (GLULAM)

PODIUM (CONCRETE)

ASCENT TYPICAL TIMBER LEVEL

ASCENT TRANSFER LEVEL

ASCENT TYPICAL PARKING LEVEL

CONSTRUCTION SEQUENCE

CONSTRUCTION SEQUENCE

CONNECTIONS

CONNECTIONS

CONNECTIONS

