37th International CIB W78 Conference BUILDING A NEXT GENERATION AI PLATFORM FOR AEC: A REVIEW AND RESEARCH CHALLENGES

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space Mentor: Charles Shen Feniosky Peña-Mora Fredric M. Bell

Overview

01 Introduction

- Motivations in AEC
- Advanced technologies
- Research methods
- Knowledge map

02 AI Platform

- Framework for AI platform
- AI-based data acquisition
- AI-based BIM model generation
- Blockchain-based collaboration
- AR-based visualization

03 Al-based CM

- Progress management
- Safety management
- Quality management
- Contract management
- Cost management
- Sustainability management
- Summary

04 Conclusions

- Potentials of developing AI platform for AEC
- Existing challenges
- Future work
- Links between industry and academia

01 Introduction

- Motivations in AEC
- Advanced technologies
- Research methods
- Knowledge map

Motivations in AEC

Great Potentials of Cost Saving:

The Architecture, Engineering and Construction (AEC) industry is one of the largest industries in the world; yet it is also known to have the lowest productivity gains of any industry in the past decades.

According to World Economic Forum (2016),

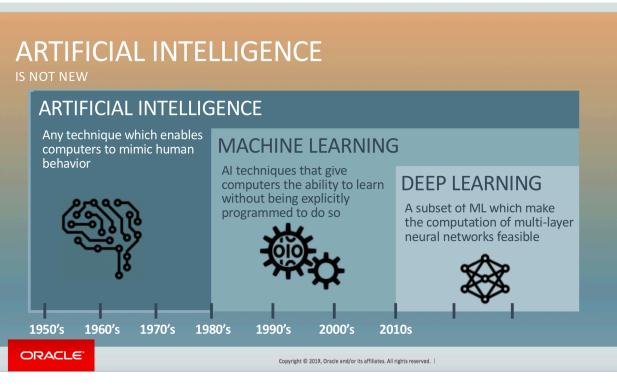
1% rise in AEC industry productivity could save

\$100 billion a year.

(Source: World Economic Forum 2016)

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

Current Problems:

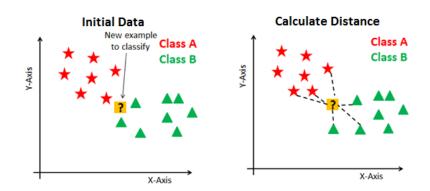

- High monitoring costs
- Difficulty in real-time monitoring
- Lack of trust and transparency
- Ineffective transmission of site information

To address these challenges, researchers have tried to explore some advanced techniques into AEC industry.

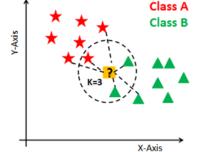
Example:

Artificial Intelligence (AI), Building Information Modeling (BIM), 3D Reconstruction, Augmented Reality (AR), Blockchain, etc.

What is Artificial Intelligence?

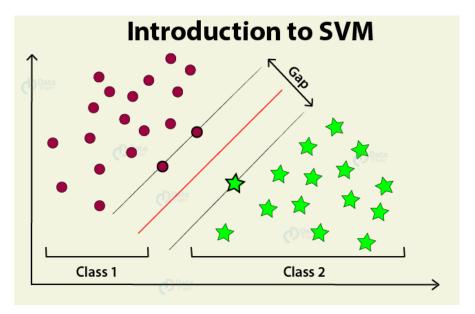

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space


(Source: Oracle 2019)

K-Nearest Neighbors Algorithm (KNN)

- Used for classification and regression
- Classify based on distance
- Assign the same class to K nearest examples

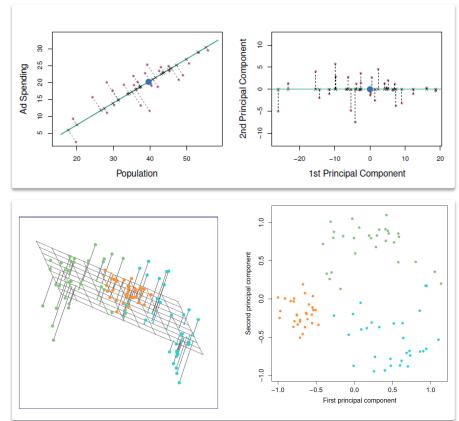


COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

(Source: Navlani 2018)

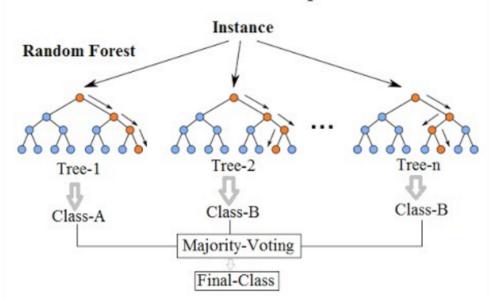
Support Vector Machine (SVM)

- Used for two-group classification
- Classify based on decision boundary found by using kernel trick to transform data
- Perform well with a limited amount of data



COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

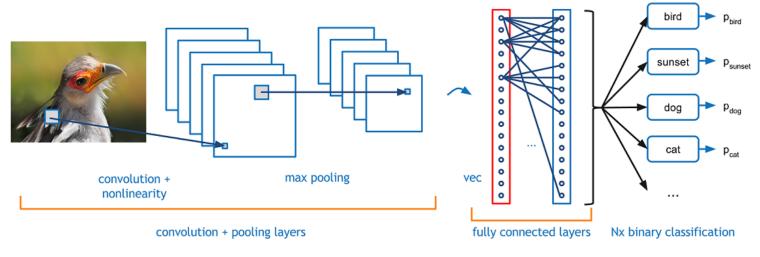
(Source: Dataflair Team 2019)


Principal Component Analysis (PCA)

- Used for reducing the dimensionality of datasets
- Used for extracting the main feature components of the data
- Increase interpretability
- Minimize information loss

Random Forest (RF)

- Used for classification and regression
- Consist of many decision trees
- Get final class based on the majority vote of all the trees of the forest


Random Forest Simplified

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

(Source: Koehrsen 2017)

Convolutional Neural Network (CNN)

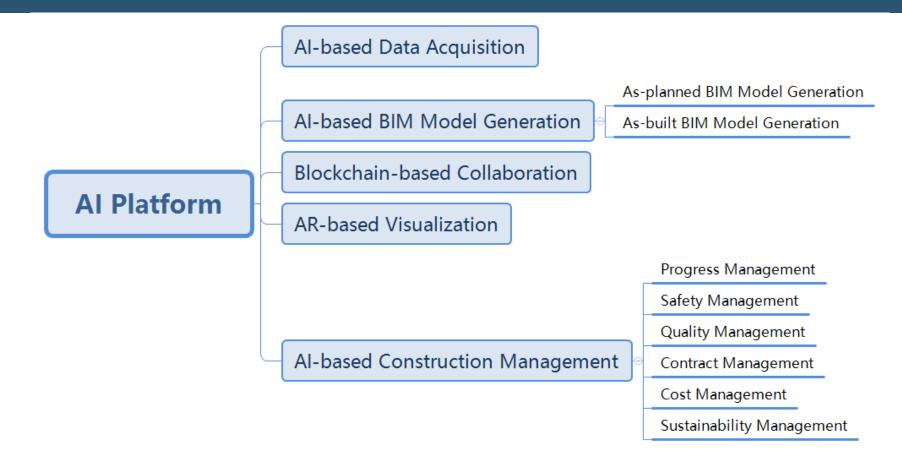
- Commonly used for classifying images
- Extract local features by learning the filters that recognize batches
- Share parameters among neurons to reduce the complexity
- Learn high-level features by combining multiple low-level features

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: dshahid380 2019)

First Step: Searching	Topic	Keyword		
Database: Web of Science, ScienceDirect, ASCE, IEEE, Google Scholar.	As-planned BIM Model Generation	2D drawings, BIM, floor plan, AI		
Period Range: 2014 - 2020 Type of Literature: journal articles, conference	As-built BIM Model Generation	Point clouds, construction, BIM, machine learning, deep learning, registration, segmentation, classification, 3D reconstruction		
papers.	Blockchain-based	Blockchain, AI, IoT, smart contract, BIM,		
Involved Topics: artificial intelligence, computer	Collaboration	construction		
vision, civil engineering, and construction management	AR-based Visualization	Augmented reality, AI, construction management		
Second Step: Filtering	AI-based Construction Management	Machine learning, deep learning, progress monitoring, construction safety, quality inspection		
management Second Step: Filtering	AI-based Construction	Machine learning, deep learning, progress		

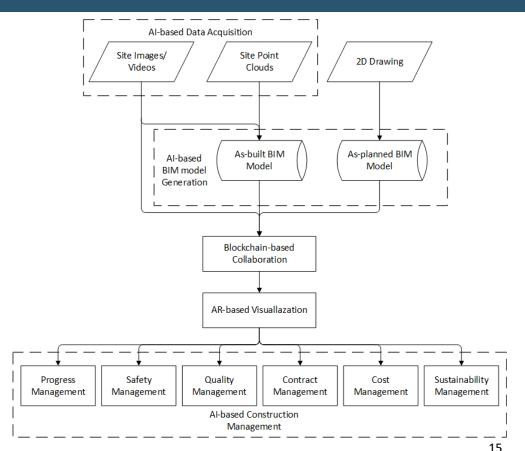

Research methods

First Step: Searching Second Step: Filtering

After the two-step searching and filtering, **225** academic papers are selected.

Overview of Literature Search 100 90 80 80 70 60 50 40 30 20 21 10 14 Ω No. of Papers As-planned ■As-built ■Bloockchain ■AR ■CM

Knowledge map



02 AI Platform

- Framework for AI platform
- AI-based data acquisition
- AI-based BIM model generation
- Blockchain-based collaboration
 - AR-based visualization

Framework for AI platform

- Input: Images/videos, Point clouds, 2D drawings.
- Technology: AI, BIM, Blockchain, AR
- Output: Progress management, Safety management, Quality management, Contract management, Cost management, Sustainability management.

Al-based data acquisition

Traditional method: Manual drawing

Time-consuming and costly

New method: UAVs + AI

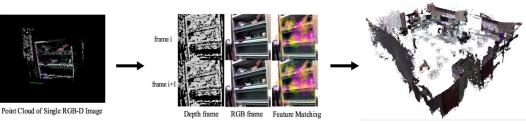
Efficient and cost-effective

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

(Source: Civil + Structural Engineer Media 2020; Commercial UAV news 2018)

Al-based data acquisition

What is UAVs?


Unmanned aerial vehicles (UAVs) can collect image data in the inaccessible areas or undertake tasks that are dangerous to human beings (Shang and Shen 2017).

Benefits:

- Lower labor costs
- Higher efficiency
- Visual coverage of site

Challenges:

- Incompleteness of coverage
- Autonomous path planning and navigation

3D Map (with Camera viewpoints)

Figure 1. Workflow of generating the 3D map of an indoor office using RGB-D camera and the graph-based SLAM approach

Figure 3. Experimental Setup: (a) UAV and on-site operator; (b) the attached positions of RGB camera, RGB-D camera and onboard computer on the craft

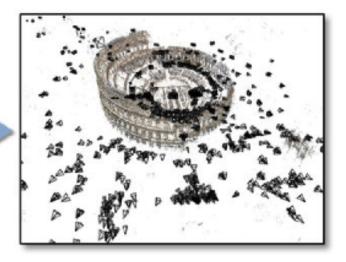
COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Shang and Shen 2017)

Al-based BIM model generation

3D Reconstruction


3D reconstruction is the process of capturing the shape and appearance of real objects. It is the creation of three-dimensional models from a set of images.

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space Structure From Motion (SfM): structure images.

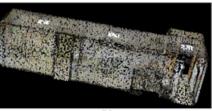
Multi View Stereo (MVS): make 3D dense point clouds.

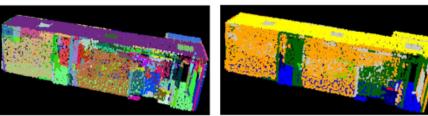
To make a 3D model from set of images, we need firstly do SfM and then MVS.

(Source: McCann 2014)

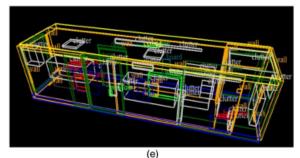
AI-based BIM model generation

General Procedure:


- (a) Data collection
- (b) Geometric model generation
- (c) Segmentation for building elements
- (d) Building elements classification
- (e) 3D model reconstruction


Methods:

(b): SfM + MVS + CNN (DL)
(c): KNN, PCA (ML)
(d): SVM, RF (ML) or 2D/3D CNN (DL)


(a)

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

(Source: Chen et al. 2019)

Example: Chen et al. (2019)

Table 3 shows that the detection accuracy varies widely between classes due to the different geometries and amounts of training data available for each class. **Table 3.** Objectwise accuracy (percentages) comparison between different recognition methods

Class	Armeni et al. (2016)	Qi et al. (2017a)	Liu et al. (2017)	Proposed
Beam	66.7	_	78.6	42.1
Board	3.9	11.7	37.2	54.6
Bookcase	54.7	_	85.0	36.9
Ceiling	71.6	_	89.6	84.8
Chair	16.2	33.8	58.1	61.9
Column	91.8	_	89.4	43.8
Door	54.1	_	33.4	55.0
Floor	88.7	_	95.0	97.2
Sofa	6.8	4.8	77.0	15.7
Table	46.0	46.7	70.5	30.7
Wall	72.9	_	60.1	52.4
Window	25.9	_	75.3	54.3
Average	49.9	24.2	70.8	52.4

Note: Bold numbers indicate best-performing method.

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

(Source: Chen et al. 2019)

Al-based BIM model generation

Benefits:

- Time-saving generation process
- Less labor costs
- Real-time reflection of progress

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

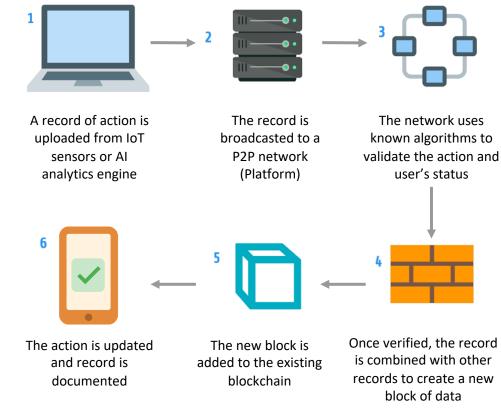
21

Al-based BIM model generation

Challenges:

- Lack of "end-to-end" algorithm
- Impact of noise and occlusions
- Limited size of memory of algorithms
- Lack of training dataset with diverse data

Blockchain-based collaboration


What is Blockchain?

Originating from Bitcoin, blockchain is a distributed public ledger that the data, assets and transaction records can be shared among participants in the network to achieve mutual-trust network.

(Hargaden et al. 2019)

Characteristics:

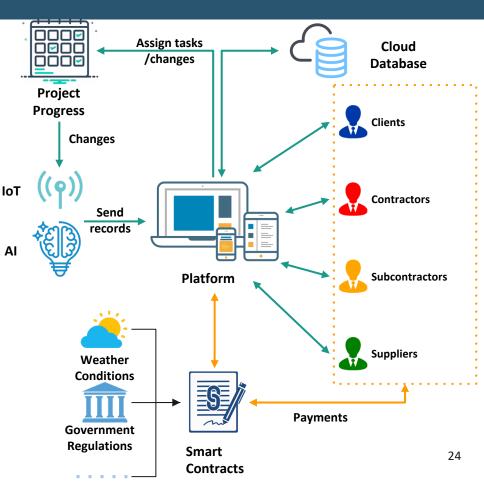
- Immutability
- Decentralization
- Transparency
- Trustless Mechanism

Blockchain-based collaboration

How to use Blockchain?

Develop a framework with the integration of blockchain, AI, smart contract, BIM, IoT.

Blockchain: Progress updating & information tracking

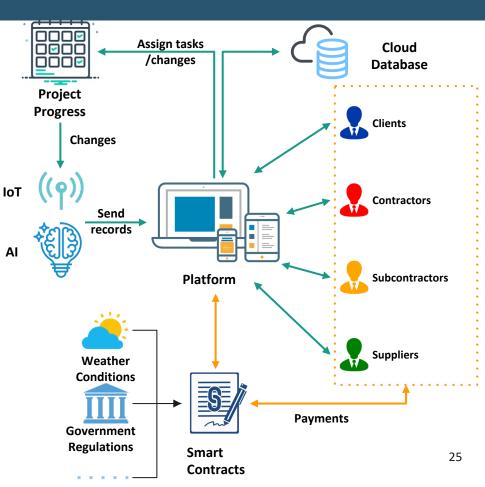

AI: Automated progress monitoring & decision making

Smart contract: Automated code compliance checking

BIM: Data storage for building information

IoT: Data collection and updating

Possible framework (right)



Blockchain-based collaboration

Challenges:

- Still in the infancy stage
- Difficult to be adopted by traditional industry
- No actual design or use case of integration
- Unpredictable costs of transferring

Possible framework (right)

AR-based visualization

What is AR?

- A combination of real and virtual worlds
- Real-time interaction
- Accurate 3D registration of virtual and real objects

How to use AR?

Progress management:

Using color code to show the difference between the schedule and real work

Defect detection:

Mapping the BIM model to the site for tasks confirmation

(Source: Ratajczak et al. 2019, Lamsal and Kunichika 2019)

AR-based visualization

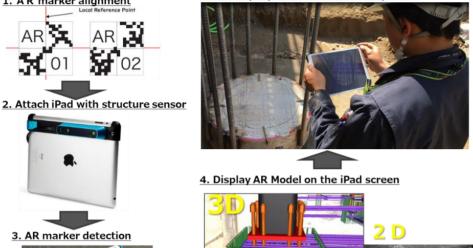
What is AR?

- · A combination of real and virtual worlds
- Real-time interaction
- Accurate 3D registration of virtual and real objects

How to use AR?

Progress management:

Using color code to show the difference between the schedule and real work


Defect detection:

Mapping the BIM model to the site for tasks confirmation

e difference eal work he site for tasks (Source: Ratajc

1. A R marker alignment

5. Follow people movement and inspection

(Source: Ratajczak et al. 2019, Lamsal and Kunichika 2019)

Benefits:

Visualization: Display the progress deviation quickly and visually. Reduce decision-making errors

Efficiency: Integrate multiple information to improve productivity

Challenges:

Localization: Lack of rapid and accurate unmarked localization method

Fragmentation: Lack of a platform to aggregate all functions

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

Al role:

Localization: Simultaneous Localization and Mapping (SLAM)

03 Al-based CM

- Progress management
- Safety management
- Quality management
- Contract management
- Cost management
- Sustainability management
- Summary

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

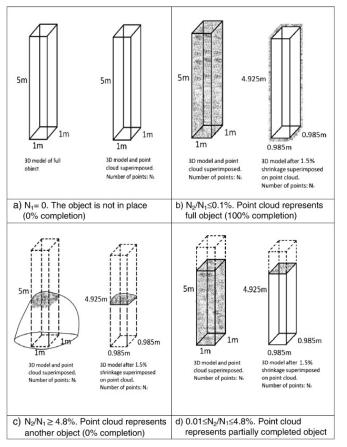
GERSEN DA

Type:

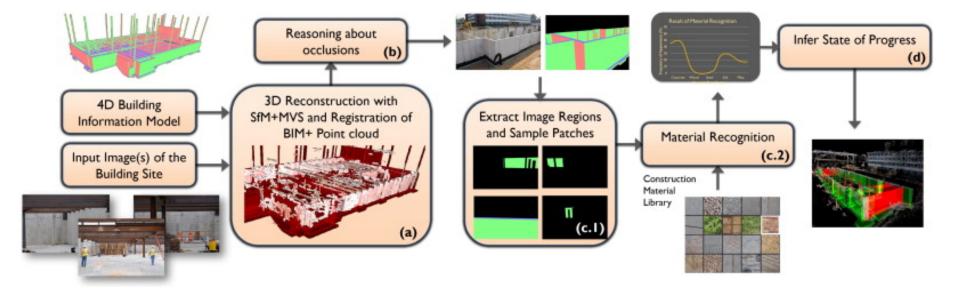
Geometry-based progress monitoring:

- Align the As-built model and As-planned model
- Use different operations to conclude the occupancy rate

Appearance-based progress monitoring:


 Check whether corresponding materials in the as-planned model are identified in the as-built model

Mixed progress monitoring:


- Geometry-based method for most scenario
- Appearance-based method for occlusion

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Zhang and Arditi 2013)

COLUMBIA | CBIPS

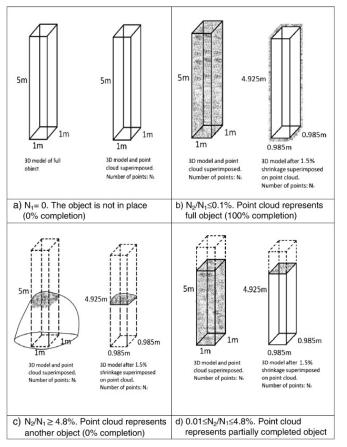
Center for Buildings, Infrastructure and Public Space

Type:

Geometry-based progress monitoring:

- Align the As-built model and As-planned model
- Use different operations to conclude the occupancy rate

Appearance-based progress monitoring:


 Check whether corresponding materials in the as-planned model are identified in the as-built model

Mixed progress monitoring:

- Geometry-based method for most scenario
- Appearance-based method for occlusion

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Zhang and Arditi 2013)

Where is Al

Models Alignment: Similar to point clouds registration

Material identification:

- Gaussian Mixture Model
- Artificial Neural Network
- Support Vector Machine (most accurate)

Benefits:

Reduced workload: Automated progress monitoring

Reduced cost: Reduce the number of employees

Challenges:

- Facing occlusion and noise
- Not accurate when as-planned models lack details
- Lack of using high-level reasoning (e.g. construction sequencing)

Scan day	ID	Activity name	Start date	End date	Recognized visible progress	Scheduled progress	Actual visible progress
2008-08-12	7	Slab on Grade — Ground Floor	2008-07-20	2008-08-19	67%	67%	65%
	8	Walls & Columns – Ground Floor	2008-08-04	2008-09-01	21%	32%	20%
	9	Concrete Slab – 2nd Floor	2008-08-18	2008-09-16	0%	0%	0%
2008-08-19	7	Slab on Grade — Ground Floor	2008-07-20	2008-08-19	100%	100%	100%
	8	Walls & Columns – Ground Floor	2008-08-04	2008-09-01	48%	48%	48%
	9	Concrete Slab – 2nd Floor	2008-08-22	2008-09-22	0%	0%	0%
2008-08-21	7	Slab on Grade — Ground Floor	2008-07-20	2008-08-19	100%	100%	100%
	8	Walls & Columns – Ground Floor	2008-08-04	2008-09-01	50%	58%	50%
	9	Concrete Slab — 2nd Floor	2008-08-22	2008-09-22	0%	0%	0%
2008-08-26	7	Slab on Grade — Ground Floor	2008-07-20	2008-08-19	100%	100%	100%
	8	Walls & Columns – Ground Floor	2008-08-04	2008-09-02	67%	67%	65%
	9	Concrete Slab — 2nd Floor	2008-08-22	2008-09-22	0%	14%	0%
2008-08-29	7	Slab on Grade — Ground Floor	2008-07-20	2008-08-19	100%	100%	100%
	8	Walls & Columns – Ground Floor	2008-08-04	2008-09-03	71%	81%	72%
	9	Concrete Slab — 2nd Floor	2008-08-22	2008-09-26	0%	17%	0%

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

Safety management

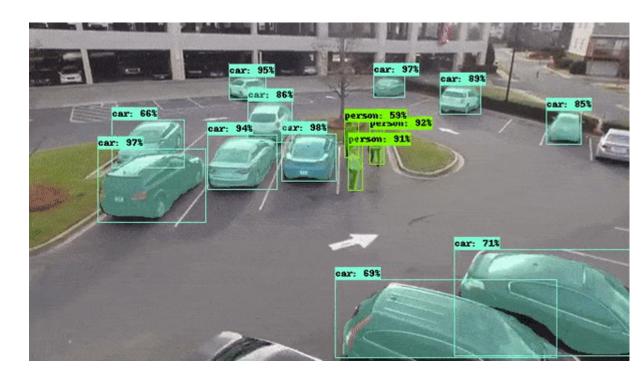
What is Computer Vision?

Computer vision is a field of artificial intelligence that trains computers to interpret and understand the visual world (SAS 2020).

Its Benefits/Limitations?

Benefits:

- Faster and simpler process
- Accurate outcome
- Cost reduction


Limitations:

- Lack of specialists
- Need for regular monitoring

(Source: Allerin 2019)

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Towards Data Science 2018)

Safety management

Methods:

Faster R-CNN (object detection)

Applications

1. PPE Detection

Identify whether workers on site wear Personal Protection Equipment (PPE) properly, e.g. hardhat.

Large Visual Range

Middle Visual Range

Small Visual Range

Standing

Bending

Squatting

Sitting

Whole body visible

Upper body visible

Head visible

Only part of head visible

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Fang et al. 2018)

Safety management

Methods:

Faster R-CNN (object detection)

Applications

2. Unsafe Behavior Detection

Detect the unsafe behaviors that workers are doing on sites, e.g. traversing structural supports during the construction.

Fig. 4. Examples of detection of individuals walking on supports.

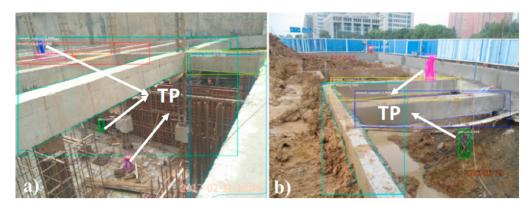


Fig. 5. Examples of detection of an individual walking on supports.

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

(Source: Fang et al. 2019)

Safety management

Methods:

Faster R-CNN (object detection)

Applications

3. Hazardous Area Detection

Detect the areas that have risks of accidents on sites, e.g. the edges of slab.

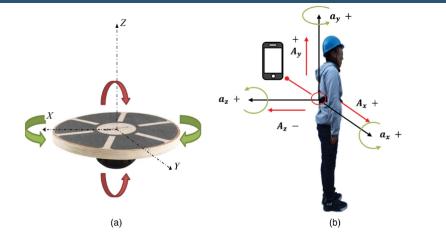


Fig. 2. Use of a balance board to simulate LOB scenes: (a) simulation in multiple directions; and (b) three-axis acceleration and angle collection.

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

Fig. 3. Layout of the test platform.

(Source: Zhang et al. 2019)

Safety management

Benefits:

Reduced occurrence of accidents:

- Alarming mechanism
- Prediction model ٠

Reduced labor costs:

Automated detection .

Challenges:

- Lack of lager datasets with diverse images for training •
- Negative effect of occlusions •
- No common standard to evaluate the performance of ٠ detection

Table 4

Misty Rain

Hazv

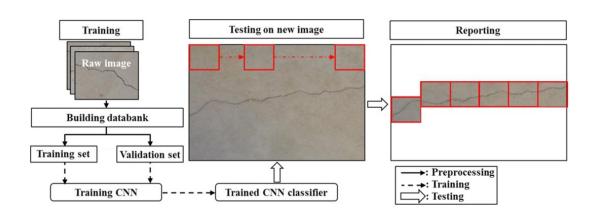
Fig. 5. Image frame examples under different weather conditions. Precision, recall and miss rate ratios in different weather conditions.

,,									
Categories	No.	Value	TP	FP	FN	Precision (%)	Recall (%)	Miss rate (%)	Speed (s)
Weather	1	Sunny	2459	83	123	96.7	95.2	4.8	0.204
	2	Cloudy	2155	98	94	95.7	95.8	4.2	0.202
	3	Misty rain	1586	107	98	93.7	94.2	5.8	0.209
	4	Hazy	2186	123	164	94.7	93.0	7.0	0.210

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Fang et al. 2019)


Methods:

Al-based objects recognition

- Convolutional Neural Network
- Support Vector Machine
- Faster R-CNN
- Fully Convolutional Networks

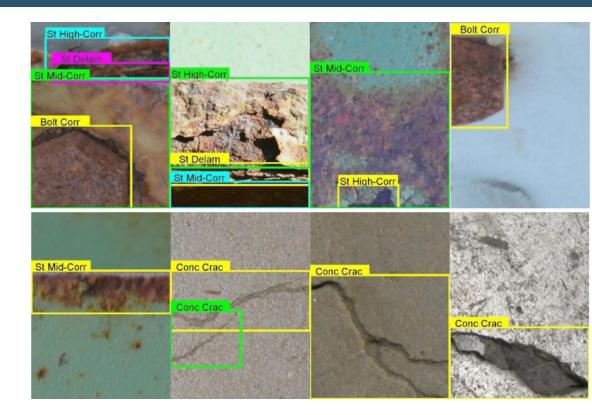
What it can do?

- Rail detection
- Sewer detection
- Tunnel detection
- Road detection
- Building detection

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Cha et al. 2017, Cha et al. 2018)


Methods:

Al-based objects recognition

- Convolutional Neural Network
- Support Vector Machine
- Faster R-CNN
- Fully Convolutional Networks

What it can do?

- Rail detection
- Sewer detection
- Tunnel detection
- Road detection
- Building detection

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Cha et al. 2017, Cha et al. 2018)

Methods:

Al-based objects recognition

- Convolutional Neural Network
- Support Vector Machine
- Faster R-CNN
- Fully Convolutional Networks

What it can do?

- Rail detection
- Sewer detection
- Tunnel detection
- Road detection
- Building detection

Benefits:

Reduced workload:

Automated progress monitoring

Reduced cost:

• Reduce the number of employees

Challenges:

- Lacking large database for training
- One algorithm can only detect a limited type of quality defects
- Cannot be applied to recognize defects
 which are not visible

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

(Source: Cha et al. 2017, Cha et al. 2018)

	Table A1 Continued										
No.	# of Pos. $^{(i)}$	# of Neg. ⁽ⁱⁱ⁾	# of TP ^(iii)	$\# of TN^{(iv)}$	# of FP ^(v)	# of $FN^{(v)}$	Accuracy	Precision	Recall	<i>F1</i>	Remark
3	55	553	54	538	15	1	0.97	0.78	0.98	0.87	Figure 14(c)
4	37	571	35	566	5	2	0.99	0.88	0.95	0.91	Figure 14(d)
5	58	550	41	550	0	17	0.97	1.00	0.71	0.83	Figure 14(e)
6	45	269	42	266	3	3	0.98	0.93	0.93	0.93	-
7	23	291	23	289	2	0	0.99	0.92	1.00	0.96	_
8	35	279	35	275	4	0	0.99	0.90	1.00	0.95	_
9	31	283	25	283	0	6	0.98	1.00	0.81	0.89	_
10	31	283	29	281	2	2	0.99	0.94	0.94	0.94	_
11	32	282	32	279	3	0	0.99	0.91	1.00	0.96	_
12	30	284	30	277	7	0	0.98	0.81	1.00	0.90	_
13	30	284	30	283	1	0	1.00	0.97	1.00	0.98	_
14	31	283	31	281	2	0	0.99	0.94	1.00	0.97	_
15	31	283	30	253	30	1	0.90	0.50	0.97	0.66	_
16	38	276	32	271	5	6	0.96	0.86	0.84	0.85	_
17	28	286	28	285	1	0	1.00	0.97	1.00	0.98	_
18	34	392	34	389	3	0	0.99	0.92	1.00	0.96	_
19	30	396	30	391	5	0	0.99	0.86	1.00	0.92	_
20	23	403	23	400	3	0	0.99	0.88	1.00	0.94	_

(Source: Cha et al. 2017)

Average precision (%) mAP(%)Case Concrete cracks Medium steel corrosion High steel corrosion Bolt corrosion Steel delamination 87.1 84.6 83.3 90.2 1 90.3 87.0 2 3 89.8 85.4 89.8 85.0 80.6 79.5 85.9 86.1 90.5 83.5 90.1 80.5 4 86.6 89.5 85.0 82.5 89.7 86.4 5 85.6 89.1 83.8 82.7 90.2 82.1 6 86.5 90.3 84.2 82.7 90.6 84.5 7 87.6 89.8 85.9 85.1 90.5 86.5 8 85.5 84.3 87.6 90.4 90.6 87.4 84.3 9 85.3 89.5 83.3 89.7 79.7 10 85.8 90.8 85.9 82.9 89.7 79.5 90.2 83.0 82.5 98.0 11 87.6 84.2 12 85.4 89.9 84.8 82.4 90.0 79.7 13 85.5 90.3 85.4 79.5 89.8 82.6 14 85.2 89.2 84.3 82.2 89.4 80.8 15 85.2 83.5 81.7 89.8 90.3 80.8 16 87.6 90.5 85.7 84.4 90.4 87.3 17 87.2 84.3 84.9 90.7 90.8 85.5 18 85.7 85.2 89.3 85.0 90.1 79.0 90.9 85.6 82.3 89.5 19 85.4 78.7 82.4 20 85.0 90.4 83.9 89.4 78.9

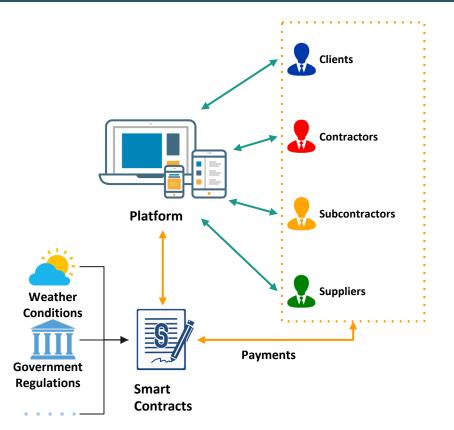
The performance of the network for the testing set

(Source: Cha et al. 2018)

Contract management

Definition:

Contract management: The process that manages the creation and execution of contracts efficiently (Chen et al. 2019), involving various stakeholders (e.g. contractor, client, engineers, government, etc.).


Applications:

- Automated contract execution
- Automated code compliance
- Automated payment

Benefits:

- Reduced labor costs
- Reduced processing time
- Increased reliability

Contract management

Definition:

Contract management: The process that manages the creation and execution of contracts efficiently (Chen et al. 2019), involving various stakeholders (e.g. contractor, client, engineers, government, etc.)

Applications:

- Automated contract execution
- Automated code compliance
- Automated payment

Challenges:

- Reference data model that explicitly defines terms, conditions relationships, etc.
- Machine-readable script of contract that can be reviewed and verified by experts

🖆 COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

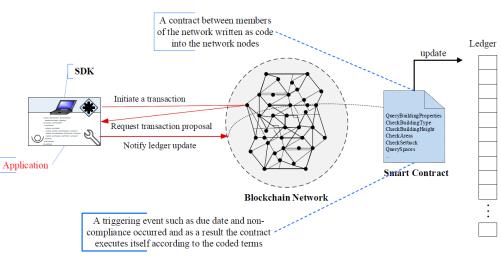


Figure 3. The concept of smart contract in a blockchain network.

Cost management

Methods:

- Neural network (NN)
- Support Vector Machine (SVM)
- Case-Based Reasoning (CBR)

What it can do?

• Estimating costs with limited information

Benefits

Support decision making

Limitation

• Model construction is time consuming and tedious

🖆 Columbia | CBIPS

Center for Buildings, Infrastructure and Public Space

I	Description	Min	Max	Average	Remark
	Year	Fro	None		
	Budget	1. BTL	al Finance	Nom.	
	School Levels	1 2.	Nom.		
	Land Acquisition	1. Exis 3	Nom.		
Input	Class Number	12	48	31	Num.
	Building Area	1204	3863	3 2694	Num.
	Gross Floor Area	4925	12,71	0 9656	Num.
	Storey	3	7	4.7	Num.
	Basement Floor	0	2	0.5	Num.
	Floor Height	3.3	3.6	3.5	Num.
Output	1				

(Source: Kim et al. 2013)

Notation	Algorithm/model	Algorithm type	MAPE (%)	MAPE (%) categorization	R^2	<i>R</i> * ²
M1	XGBoost	Ensemble methods	9.091	Below 10	0.931	0.929
M2	Quadratic regression ^a	MRA	9.120	Below 10	0.857	0.851
M3	Plain regression ^a	MRA	9.130	Below 10	0.803	0.796
M4	Quadratic MLP ^a	ANNs	9.200	Below 10	0.904	0.902
M5	Plain MLP ^a	ANNs	9.270	Below 10	0.913	0.912
M6	Semilog regression ^a	MRA	9.300	Below 10	0.915	0.910
M7	Extra trees	Ensemble methods	9.714	Below 10	0.948	0.947
M8	Natural log MLP ^a	ANNs	10.230	Below 20	0.905	0.910
M9	Bagging	Ensemble methods	10.246	Below 20	0.914	0.911
M10	RF	Ensemble methods	10.503	Below 20	0.916	0.913
M11	AdaBoost	Ensemble methods	10.679	Below 20	0.875	0.871
M12	SGB	Ensemble methods	11.008	Below 20	0.926	0.924
M13	Reciprocal regression ^a	MRA	11.200	Below 20	0.814	0.801
M14	Power (2) regression ^a	MRA	11.790	Below 20	0.937	0.931
M15	DNNs	ANNs	12.059	Below 20	0.785	0.779
M16	DT	Tree model	12.488	Below 20	0.886	0.883
M17	Genetic fuzzy	Hybrid model	14.700	Below 20	0.863	0.857
M18	CBR	Case-based	17.300	Below 20	0.859	0.852
M19	SVM	Kernel-based	21.217	Unacceptable	0.136	0.133
M20	Fuzzy	Fuzzy theory	26.300	Unacceptable	0.857	0.851

(Source: ElMousalami et al. 2018)

Sustainability management

Definition:

The practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout the full life cycle of a building (EPA 2016).

Applications:

- Automated material management
- Automated facility management
- Building performance simulation

Benefits:

- Reduced material waste
- Labor cost and time saving
- Energy efficiency improvement

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

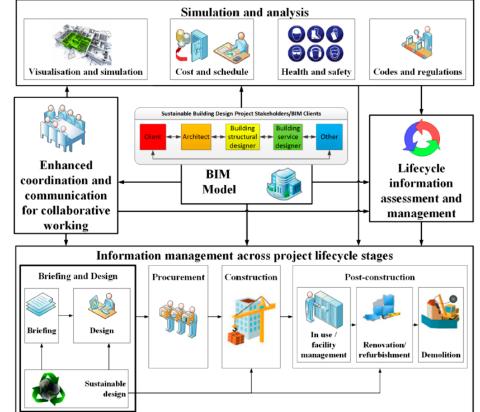
(Source: Mixbrow Construction 2020)

Sustainability management

Definition:

The practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout the full life cycle of a building (EPA 2016).

Applications:


- Automated material management
- Automated facility management
- Building performance simulation

Challenges:

- Uncertainty based on incomplete building documentation
- Management of information transfer between real-time operations system and BIM model

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

Sustainability management

Definition:

The practice of creating structures and using processes that are environmentally responsible and resource-efficient throughout the full life cycle of a building (EPA 2016).

Applications:

- Automated material management
- Automated facility management
- Building performance simulation

Challenges:

- Uncertainty based on incomplete building documentation
- Management of information transfer between real-time operations system and BIM model

COLUMBIA | CBIPS

Center for Buildings, Infrastructure and Public Space

Future Direction:

- Apply AI technology in resource allocation
- Apply AI technology in real-time facility monitoring

Summary

СМ	Progress Safety		Quality	Contract	Cost	Sustainability	
Involved Techs		AI, BIM, UAV		Blockchain, Al, IoT Al		AI, BIM	
Applications	Progress monitoring PPE detection; Unsafe behavior detection; Hazardous area detection		Automated contract execution, code compliance, payment	Estimating costs with limited information	Automated material management; Automated facility management; Building performance simulation		
Benefits	R	Reduced workload, costs, time		Reduced disputes	Decision making support	Reduced material waste; Labor cost and time saving; Energy efficiency improvement	
Challenges	Occlusion and noise; Datasets; Generalized models			Readability	Time- consuming and tedious in model generation	Uncertainty; Information transfer	

04 Conclusions

Potentials of developing AI platform for AEC

- Existing challenges
- Future work
- Links between industry and academia

COLUMBIA | CBIPS Center for Buildings, Infrastructure and Public Space

ELSE D

Potentials of developing AI platform for AEC

With the integration of advanced technologies, a new revolution is occurring.

1. Automated BIM model generation Decrease the risks of delay and cost overruns.

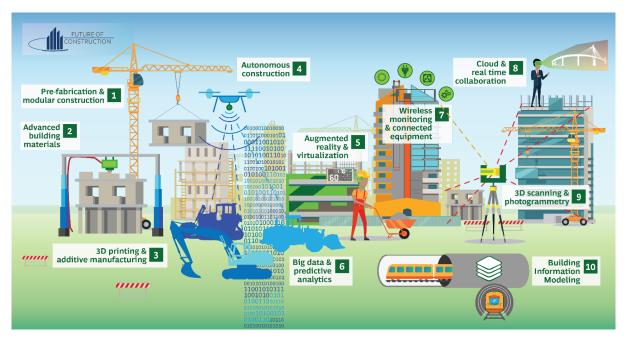
- **2. Blockchain-based collaboration** Resolve the problems of lack of trust.
- 3. AR-based visualization

Develop immersive interaction between real-life projects and stakeholders.

4. Al-based construction management Make remote management possible and effective.

Existing challenges

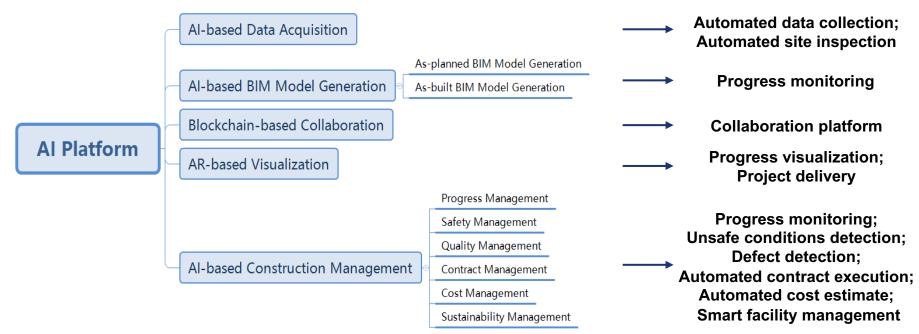
Technology:


- Inability of AR mobile devices to run AI algorithms for localization
- Inability of integrating generated model with schedule
- · Reduced quality of generated model due to occlusions and noise
- Expensive computing costs of AI-based models
- Low ability of generalization of AI-based models

Framework:

- Lack of large uniform dataset for training deep learning algorithms
- Lack of standard to evaluate performance of AI-based models
- Lack of actual framework and implementation of blockchain in AEC
- Difficulty of being adopted rapidly by traditional industry

Future work


- Technical problem solving
- Actual framework
- Uniform standard
- Widespread adoption

Links between academia and industry

Academia

Industry

Thank you

- 1. Allerin. (2019). Understanding computer vision, its advantages, and limitations. <u>https://www.allerin.com/blog/understanding-computer-vision-its-advantages-and-limitations</u>
- 2. Chen, J., Kira, Z., & Cho, Y. K. (2019). Deep learning approach to point cloud scene understanding for automated scan to 3D reconstruction. Journal of Computing in Civil Engineering, 33(4), 04019027.
- 3. Civil + Structural Engineer Media. (2020). Architects concept, engineer architect designer freelance work on start-up project drawing, construction plan. architect design working drawing sketch plans blueprints and making construction model. <u>https://csengineermag.com/with-claims-rising-architects-engineers-professional-liability-insurers-plan-modest-rate-increases/architects-concept-engineer-architect-designer-freelance-work-on-start-up-project-drawing-construction-plan-architect-design-working-drawing-sketch-plans-blueprints-and-making-construction-model/</u>
- 4. Commercial UAV news. (2018). Establishing a Drone Business with Part 107 in Construction. <u>https://www.commercialuavnews.com/construction/establishing-a-drone-business-with-part-107-in-construction</u>
- 5. dshahid380. (2019). Convolutional Neural Network. <u>https://towardsdatascience.com/covolutional-network-cb0883dd6529</u>
- 6. Dataflair Team. (2019). Support Vector Machines Tutorial Learn to implement SVM in Python. <u>https://data-flair.training/blogs/svm-support-vector-machine-tutorial/</u>

- 7. Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., Rose, T. M., & An, W. (2018b). Detecting nonhardhat-use by a deep learning method from far-field surveillance videos. Automation in Construction, 85, 1–9.
- 8. Fang, W., Zhong, B., Zhao, N., Love, P. E., Luo, H., Xue, J., & Xu, S. (2019). A deep learningbased approach for mitigating falls from height with computer vision: Convolutional neural network. Advanced Engineering Informatics, 39, 170–177.
- 9. Hargaden, V. et al. (2019) 'The Role of Blockchain Technologies in Construction Engineering Project Management', in 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). IEEE, pp. 1–6.
- Hargaden, V. et al. (2019) 'The Role of Blockchain Technologies in Construction Engineering Project Management', in 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). IEEE, pp. 1–6.
- Kim, G.-H., Shin, J.-M., Kim, S., & Shin, Y. (2013). Comparison of School Building Construction Costs Estimation Methods Using Regression Analysis, Neural Network, and Support Vector Machine. *Journal of Building Construction and Planning Research*, 1(1), 720–726. <u>https://doi.org/10.4236/jbcpr.2013.11001</u>

- 12. Koehrsen. (2017). Random Forest Simple Explanation. https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
- 13. Liu, Z., Jiang, L., Osmani, M., & Demian, P. (2019). Building Information Management (BIM) and blockchain (BC) for sustainable building design information management framework. Electronics, 8(7), 724.
- 14. McCann, S. (2014). 3 D Reconstruction from Multiple Images.
- 15. Mixbrow Construction. (2020). Sustainability. <u>http://www.mixbrow.com/how-we-work/sustainability/</u>
- 16. Navlani. (2018). KNN Classification using Scikit-learn. <u>https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn</u>
- 17. Navon, R., & Sacks, R. (2007). Assessing research issues in automated project performance control (APPC). Automation in Construction, 16(4), 474–484.
- 18. Nawari, N. O., & Ravindran, S. (2019b). Blockchain and the built environment: Potentials and limitations. Journal of Building Engineering, 100832.
- 19. Oracle. (2019). What's the Difference Between AI, Machine Learning, and Deep Learning? https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning
- Perez-Perez, Y., Golparvar-Fard, M., & El-Rayes, K. (2018). Automatic 3D Modeling of Structural and Mechanical Components from Point Clouds. *Construction Research Congress* 2018, 501–511. <u>https://doi.org/10.1061/9780784481264.049</u>

- Pučko, Z., Šuman, N., & Rebolj, D. (2018). Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Advanced Engineering Informatics, 38, 27–40.
- 22. SAS. (2020). Computer Vision. <u>https://www.sas.com/en_us/insights/analytics/computer-vision.html</u>
- 23. Shang, Z., & Shen, Z. (2017). Real-time 3D reconstruction on construction site using visual SLAM and UAV. ArXiv Preprint ArXiv:1712.07122.
- 24. Sun, J., Lei, K., Cao, L., Zhong, B., Wei, Y., Li, J., & Yang, Z. (2020). Text visualization for construction document information management. Automation in Construction, 111, 103048.
- 25. Towards Data Science. (2018). How to do everything in Computer Vision. https://towardsdatascience.com/how-to-do-everything-in-computer-vision-2b442c469928
- 26. Turkan, Yelda, et al. (2019). "Automated progress tracking using 4D schedule and 3D sensing technologies." Automation in construction 22, 414-421.
- 27. World Economic Forum. (2016). Shaping the Future of Construction A Breakthrough in Mindset and Technology.

http://www3.weforum.org/docs/WEF_Shaping_the_Future_of_Construction_full_report_.pdf

- 28. World Economic Forum. (2018). 6 ways the construction industry can build for the future. https://www.weforum.org/agenda/2018/03/how-construction-industry-can-build-its-future/
- 29. Young, G. (2020). GR5241 Set 6: Principle Component Analysis (PCA). Stat Machine Learning. Columbia University.
- Zhang, M., Cao, T., & Zhao, X. (2019). Using Smartphones to Detect and Identify Construction Workers' Near-Miss Falls Based on ANN. Journal of Construction Engineering and Management, 145(1), 04018120.