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Abstract: Transformation of the AEC industry has been found to face significant and 
persistent hurdles both internal and external to the industry, such as industrial 
fragmentation, difficulty in talent recruiting, inadequate collaboration and knowledge 
transfer. Meanwhile, advances and maturity in digital technologies recent years offer 
tremendous potential to tackle these challenges. Examples include Artificial 
Intelligence (AI) and deep learning, computer vision, big data analytics, Building 
Information Models (BIM), 3D scanning, Augmented Reality (AR), Unmanned Aerial 
Vehicles (UAVs), autonomous driving, and blockchain.  

We envision that the next generation platform for the AEC industry shall 
integrate this diverse list of digital technologies.  In this paper, we review the state-
of-the-art in related literature aiming at creating such an integrated platform. Our 
review is organized into the following four themes, and for each of them, we also 
identify gaps and challenges. 

1. AI-based BIM model generation: this topic addresses how to make BIM 
models more ubiquitous, which includes the automatic generation of As-planned BIM 
model from 2D drawings and the automatic generation of As-built BIM model from 
site images/videos and point clouds. 

2. Blockchain-based collaboration: this theme explores the possibilities of 
applying Blockchain for AEC to improve various essential aspects such as trust in 
multi-party collaboration and contract enforcement. 

3. AR-based visualization: this topic studies the AR-based visualization for 
construction management, which aims to increase the efficiency of information 
transmission. 

4. AI-based Construction management: this area reviews the application of AI 
in progress monitoring, safety management, quality management, and contract 
management. 

Based on the above analysis, we conclude by outlining potential topics of a 
research framework for creating a next generation AI platform for AEC.  
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1 INTRODUCTION 
The Architecture, Engineering, and Construction (AEC) industry is one of the largest 
industries in the world; yet it is also known to have the lowest productivity gains of any 
industry in the past decades. World Economic Forum (WEF, 2016) reports estimate that a 
1% rise in the construction industry productivity worldwide could save $100 billion a year. 

Nowadays traditional construction management is facing a series of challenges. It is 
expensive and time consuming for managers to monitor project performance (Pučko et al. 
2018). It is difficult for managers to monitor projects in real time (Navon and Sacks 2007). 
Another problem is the trust and transparency crisis between the parties in the project 
(Hargaden et al. 2019). Meanwhile, due to the lack of visualization technology, site 
information cannot be transmitted to managers effectively, which may lead to potential 
mistakes in decision making (Sun et al. 2020). 

In the past few years, researchers have tried to address these challenges by introducing 
digital technology into the AEC industry, including Artificial Intelligence (AI), Computer 
Vision, Building Information Modeling (BIM), Blockchain, Augmented Reality (AR), etc. 
Artificial Intelligence (AI) is defined as the intelligence of machines, i.e. replicate human 
intelligence via artificial technologies to invent intelligent machines (Minsky 1960; 
Mohasses 2019). In the AEC industry, AI technology becomes popular in resolving 
problems or improve performance in construction projects, e.g. machine learning, which 
is increasingly employed in project delay risk prediction (Gondia et al. 2019), facility life-
cycle cost analysis (Gao et al. 2019), etc. Deep learning is one sub-domain of machine 
learning which applies deep neural networks in task learning. Integrated with computer 
vision, deep learning has been used in safety management (Fang et al. 2020), progress 
monitoring (Lei et al. 2019), and 3D model reconstruction (Che et al. 2019). Building 
Information Modelling (BIM) is an information management system of buildings during 
their full lifecycle (Delgado et al. 2018). The application of BIM promotes the booming of 
the AEC industry, as it helps improve the efficiency and reduce costs by developing virtual 
3D models and effective management systems with rich information. Blockchain, which 
originates from Bitcoin (Nakamoto 2008), is a distributed public ledger that the data, assets 
and transaction records can be shared among participants in the network to achieve 
mutual-trust networks (Hargaden et al. 2019). The potentials of applying blockchain have 
been explored across some construction domains, e.g. construction supply chain (Tezel et 
al. 2019). Augmented Reality (AR) is the interaction between the artificial elements 
generated from digital devices and the real-life environment (Mitha et al. 2013). Now, AR 
has already been used in progress monitoring (Ratajczak et al. 2019) and defects detection 
(Lee et al. 2012). However, existing technologies are still fragmented and require 
integration to perform efficiently in construction management. 

This paper provides a literature review and organized these advanced technologies into 
a next generation AI platform for the AEC industry. The current states of various 
management to be achieved by the platform are reviewed as well as the possibility of 
applying AI technology. Meanwhile, existing challenges and future works are discussed. 
Section 1 gives an overview of related technologies; Section 2 presents the details of the 
research method; Section 3 shows a review of the technologies that contribute to the next 
generation AI platform and current states of construction management; Section 4 
concludes the work in this paper. 
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2 METHODOLOGY 
The major databases used by this paper include Web of Science, ScienceDirect, ASCE, 

IEEE, Google Scholar. In the literature search, we used different sets of keywords for 
different topics to obtain a list of related publications (See Table 1). By limiting the 
publication data from 2014 to the present, the publications that represent the latest 
research findings are collected. This review focuses on journal articles and conference 
papers in artificial intelligence, computer vision, civil engineering, and construction 
management. To select highly related publications, the collected publications are then 
filtered through reading abstracts and conclusions to exclude the papers that are not 
related to construction management. After the two-step searching and filtering, a total of 
225 academic papers are selected. Due to space constraints, this paper is unable to present 
a complete review. Therefore, we select a part of these papers (84 papers) to review. 

Table 1: Overview of Literature Search 

Topic Keyword No. of Papers 

As-planned BIM Model 
Generation 

2D drawings, BIM, floor plan, AI 14 

As-built BIM Model 
Generation 

Point clouds, construction, BIM, machine learning, 
deep learning, registration, segmentation, 

classification, 3D reconstruction 

90 

Blockchain-based 
Collaboration 

Blockchain, AI, IoT, smart contract, BIM, 
construction 

20 

AR-based Visualization Augmented reality, AI, construction management 21 

AI-based Construction 
Management 

Machine learning, deep learning, progress 
monitoring, construction safety, quality inspection 

80 

 

3 NEXT GENERATION AI PLATFORM FOR AEC INDUSTRY 
In this paper, we reviewed the advanced technologies relating to the next generation of AI 
platforms for the AEC industry. This paper will follow the structure of Figure 1 to review.  

• In section 3.1, this paper reviews the methods of input data acquisition. 

• In section 3.2, the generation of BIM model is reviewed, including As-planned BIM 
model generation (Section 3.2.1) and As-built BIM model generation (Section 3.2.2). 

• In section 3.3, blockchain-based collaboration is reviewed. 

• In section 3.4, this paper reviews AR-based visualization for construction 
management. 

• In section 3.5, this paper reviews AI-based construction management, including 
progress management (Section 3.5.1), safety management (Section 3.5.2), quality 
management (Section 3.5.3) and contract management (Section 3.5.4). 
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Figure 1: Next Generation AI Platform for AEC industry 

3.1 AI-based Data Acquisition 
Most of the papers reviewed in this paper require site images/video or point clouds as 

input. Manual-based data acquisition methods are time-consuming and costly. Unmanned 
aerial vehicles (UAVs) as a new technology can collect image data in the inaccessible areas 
or undertake tasks that are dangerous to human beings (Shang and Shen 2017), which is 
more efficient and cost-effective. More importantly, the images collected via UAVs can 
provide sufficient visual coverage overlaps of the site to support the generation of 3D 
building models, which is critical for automated progress monitoring. However, it is still a 
challenge to achieve autonomous path planning and navigation for UAVs (Ham et al. 
2016). Some studies have explored the potentials of applying AI in autonomous path 
planning (Aggarwal et al. 2019; Hamledari et al. 2018). For instance, according to 
Hamledari et al. (2018), swarm intelligence was employed in making the UAVs inspection 
plan, which reduces the flight duration and thus improves the efficiency of site inspection. 
Besides, some studies integrated 4D BIM with UAVs-enabled 3D reconstruction to achieve 
autonomous path planning of UAVs (Shang and Shen 2017). Using 4D BIM as a prior 
model, together with ray-tracing to detect visible elements, the optimal flight missions can 
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be created at locations where have expected changes to optimize the visual coverage of 
the flight plan (Ibrahim and Golparvar-Fard 2019). However, the automatic integration of 
as-built conditions into 4D BIM is still a primary challenge for UAV-based inspection 
(Hamledari et al. 2017). To resolve this challenge, Hamledari et al. (2017) utilized industry 
foundation classes (IFC) schema to achieve automatic integration of UAV-based as-built 
inspection results into 4D BIM.  

3.2 AI-based BIM Model Generation 
As-planned BIM model shows the proposed progress and As-built BIM model shows the 
actual progress (Son et al. 2017). These two models are used as inputs in progress 
management (Golparvar-Fard et al. 2010). In this section, the automatic generation of As-
planned BIM models and As-built BIM models will be reviewed. We also discussed the 
limitations of current technologies. 

 
Figure 2: BIM Model Generation Workflow 

3.2.1 As-planned BIM Model Generation 

BIM models can bring tremendous benefits to the AEC industry, but traditional BIM 
models rely on manual generation (Seyis 2019). To solve this problem, the idea of 
automatically generating BIM models was proposed. Nowadays there are several methods 
to generate As-planned BIM model through 2D drawings (Cho and Liu 2017; Lim et al. 
2018). However, some challenges exist, e.g. low accuracy of automatic recognition, heavy 
manual workload (Liu et al. 2017). 

Deep learning is used for further automation. A method based on deep learning and 
integer programming to restore geometric and semantic information of floor plans was 
proposed (Liu et al. 2017). This method achieved 90% accuracy, higher than other methods 
in the same period. However, this algorithm lacks robustness for unseen elements. A deep 
multi-task neural network was proposed to identify room types and walls (Zeng et al. 2019). 
Compared with the Raster-to-Vector algorithm (Liu et al. 2017), this algorithm has higher 
precision. And it can handle more complex floor plans, including irregular shaped rooms 
and curved walls. The identification results can be further used for 3D reconstruction. 
However, this method lacks accuracy for inside and outside region identification and 
requires a larger dataset for training to deal with the diversity of floor plans.  

At present, deep learning-based BIM model generation from 2D drawings is still facing 
some problems. Firstly, the training database is relatively small compared with training 
databases in other fields of computer vision. Meanwhile, the establishment of databases 
still rely on manual work. Secondly, the accuracy and generality of the current algorithm 
needs to be improved. Thirdly, most of the algorithm focus on 2D drawing recognition and 
vectorization. Finally, BIM models generated from 2D drawings lack schedules. 
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3.2.2 As-built BIM Model Generation 

The procedure of converting vision-based data (e.g. images, videos) to the as-built BIM 
model is referred to as Scan-to-BIM. The typical workflow involves four steps: 1) 
Geometric model generation; 2) Segmentation for building elements; 3) Building elements 
classification; 4) 3D model reconstruction. Firstly, by registering multiple laser-scanning 
point clouds or generate point clouds from a series of images, a geometric model is built. 
In the second step, the registered point clouds are segmented into many clusters that have 
similar properties. In the third step, each cluster is assigned to a class label based on 
geometric and contextual features observed. With geometric and contextual features, the 
clusters can be converted to various 3D objects, e.g. wall, windows, floor. The fourth step 
involves the splice of 3D objects to a realistic BIM model based on different spatial 
relationships. Then, some other non-metric attributes like types of materials are added to 
the individual BIM elements. A 3D BIM model is reconstructed successfully. Accurate as-
built models can help achieve automatic progress monitoring and contract execution. 

(1) Geometric Model Generation 

The input of geometric reconstruction can be classified into point clouds and images. Laser 
scanning can generate a dense and accurate point cloud, but it also needs professional 
technicians and expensive equipment (Asadi et al. 2019). For images as inputs, Structure-
from-Motion (SfM) and Multi-View Stereo (MVS) are used for reconstruction, which can 
be got from cheaper digital cameras, become possible (Han et al. 2018). 

Deep-learning-based approaches were introduced to try to replace traditional methods 
in point cloud registration. Based on PointNET (Qi et al. 2017) algorithm, PointNetLK 
combined the LK algorithm (Lucas and Kanade 1981) which was used for image alignment 
to register (Aoki et al. 2019). PoinNetLK is more efficient in computing large-scale point 
sets and it shows good applicability when facing the untrained shape. Deep Closest Point 
(DCP) algorithm (Wang and Solomon 2019) used a learning-based method to solve the 
problems existing in the ICP (Besl and McKay 1992) algorithm. When using the 
ModelNet40 database to test, the DCP algorithm is robust when facing the noise, and its 
accuracy is higher than PointNetLK (Wang and Solomon 2019). Another method used 3D-
CNN and 2D-CNN for coarse registration and fine registration respectively (Chang and 
Pham 2019). For accuracy, this method is close to RANSAC + ICP algorithm, and its 
efficiency is 15 times that of RANSAC + ICP algorithm.  

In image-based 3D reconstruction, deep-learning-based SfM algorithms are used to 
solve depth and motion. DeMoN is a convolutional network with an iterative structure 
(Ummenhofer et al. 2017). However, DeMoN can only handle one image pair, which limits 
its use. DeepTAM extended the input to multiple images and achieved better performance 
than DeMoN (Zhou et al. 2018). Other algorithms include DeepSFM (Wei et al. 2019), ENG 
(Dharmasiri et al. 2018), etc. The accuracy of all these methods is higher than the SIFT-
based method. 

For MVS, deep-learning-based MVS includes, DeepMVS (Huang et al. 2018), MVSNet 
(Yao et al. 2018), R-MVSNet (Yao et al. 2019), etc. DeepMVS performed better than the 
non-learning algorithm COLMAP (Schönberger et al. 2016) in the test. However, it only 
generates depth maps and still needs post-processing. R-MVSNet (Yao et al. 2019) tried to 
solve the scalability problem in MVSNet (Yao et al. 2018) by using gated recurrent units 
to regularizes the cost volume. R-MVSNet (Yao et al. 2019) achieves better reconstruction 
completeness and overall quality. However, the depth maps fusion algorithms in MVSNet 
(Yao et al. 2018) and R-MVSNet (Yao et al. 2019) are not using deep learning.  
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(2) Segmentation for Building Elements 

After obtaining the complete point clouds of the building from site images/videos or point 
clouds fragments, the building elements need to be generated. In segmentation, point 
clouds are segmented into separate point clusters with similar properties based on non-
semantic information (e.g. location, geometry, intensity). Some popular machine learning 
approaches for segmentation include K-nearest neighbors (KNN) and Principal 
Component Analysis (PCA). The segmentation process laid a foundation for the 
processing and analysis of each segment or object with richer information, e.g. geometric 
features and contextual features of objects. However, there is no deep learning-based 
approach for segmentation, which requires further research on it. 

(3) Building Elements Classification 
After segmentation, the building elements can be generated and identified. In 

classification, each cluster is assigned to a class (“label”) based on different criteria. Some 
features need to be extracted to describe point clouds, e.g. geometric and contextual 
features (Che et al. 2019). Geometric features describe local attributes of building elements, 
e.g. shape, size. Contextual features involve the various relationships among building 
elements (e.g. proximity), which makes the classification more robust (Bassier et al. 2019; 
Che et al. 2019). Since AI technology becomes increasingly popular in recent years, 
machine learning (ML) is employed in the classification of point clouds as a classifier. 
Support Vector Machines (SVM), Decision Trees, Random Forest (RF), and Neural 
Networks (NN) are popular models in classification. 

SVM performs well in classifying indoor and outdoor point clouds. In the study of 
Perez-Perez et al. (2019), SVM was used to extract the relationship between semantic and 
geometric labels for the following classification of segments into semantic categories. 
Their method pioneeringly identifies beams and columns automatically in a Scan-to-BIM 
process with average fitting error of 0.633 mm. However, this approach is highly 
dependent on the performance of the segmentation method selected. Random forest (RF) 
consists of multiple decision trees and allows them to select the most popular class 
(Breiman 2001). In the study of Park and Guldmann (2019), the RF algorithm was 
employed to classify LiDAR points into four different categories of building elements, 
reaching a high accuracy (96.5%). RF classifier is more robust to the quality of training 
examples and overfitting than other ML classifiers (Belgiu and Drăguţ 2016). However, 
the sample imbalance among different object classes can affect RF performance, which 
causes the issues of over- or under-representation of certain classes (Belgiu and Drăguţ 
2016).  

Deep learning has been considered for the classification of building elements due to its 
good performance (Che et al. 2019; Chen et al. 2019a; He et al. 2016; Czerniawski and 
Leite 2019). Although deep learning bypasses manual feature descriptors (Chen et al. 
2019a), regular and structured data are required as input, e.g. 2D images. Therefore, there 
are two main categories: 1) 2D image-based classification (Lawin et al. 2017); 2) 3D 
voxelization (Maturana and Scherer 2015). In 1), the point clouds are projected or 
rasterized to 2D images, while the data are voxelized to 3D grids in 2). Both two directions 
mainly use Convolutional Neural Networks (CNNs) as architecture. Lawin et al. (2017) 
used 2D images to achieve classification of 3D point clouds. They firstly projected 3D 
point clouds onto synthetic images and then projected the prediction scores obtained from 
2D CNN (fed synthetic 2D images) back to the point clouds to achieve the classification. 
Maturana and Scherer (2015) integrated 3D CNN with occupancy grid (named "VexNet") 
to identify objects like chairs. However, for 3D voxelization, occlusions and clutters 
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impede the object-level segmentation. Besides, it is more complex to use voxel grids as 
input format, which leads to the loss of accuracy. Moreover, point clouds can be directly 
used as input but cannot clearly define object boundary except using bounding boxes 
(Chen et al. 2019a; Qi et al. 2017). Therefore, this method performs well only under the 
condition that objects are separated from the background, e.g. outdoors. 

Both machine learning and deep learning need large datasets of labeled objects for 
training. Currently, the building elements are labeled by manual work, which is labor-
intensive and time-consuming (Perez-Perez et al. 2019; Wang et al. 2015). 4D BIM is one 
possible solution. BIM as a semantically rich model is used in semantic labeling and 
classification by transferring semantics from BIMs to point clouds. In the study of Braun 
and Borrmann (2019), as the as-planned BIM model is aligned with the generated point 
clouds, each BIM element could be projected onto the point clouds. This ensures a precise 
process of establishing a dataset of labeled building elements. Czerniawski and Leite (2019) 
extracted the geometry and attached semantics from BIMs and then attached them to the 
laser scanning data to create a large labeled dataset for training deep neural networks 
(DNN), which avoids the step of the dedicated annotation. 

(4) 3D Model Reconstruction 
Once the point clouds have been classified into different categories of building 

elements, the 3D model reconstruction starts. All the identified building elements are 
connected and assembled to 3D BIM models. This process needs to consider different 
spatial relationships, including aggregation (i.e. part of, belong to, etc.), topological (i.e. 
connected to, inside, outside, etc.), and directional (i.e. above, below, etc.) relationship 
(Bassier et al. 2019; Hichri et al. 2013). For example, Nguyen et al. (2005) showed an 
automatic way to deduce topological relations among building elements. Besides, other 
studies also represented identified objects in IFC format to establish topological relations 
(Macher et al. 2017). Moreover, Tran et al. (2018) presented a shape grammar approach to 
generate indoor 3D models with rich topological relations. Apart from spatial relationships, 
some non-metric attributes are added to individual building elements. These attributes 
enrich the description of the elements, including the information of materials, historical 
records, economic data, etc (Hichri et al. 2013). Although no deep learning-based approach 
is applied in the final reconstruction, some processes can potentially employ deep learning 
algorithms, e.g. the process of splicing based on spatial relationships. 

In the BIM model generation phase, knowledge is still fragmented. At present, it lacks 
an end-to-end algorithm to directly realize the generation of BIM models. Noise and 
occlusions are a major challenge for Scan-to-BIM. The current state-of-the-art algorithms 
show robustness to Gaussian noise, but their performance still needs to be improved when 
facing a higher level of noise. Occlusions are inevitable in data collection. At present, there 
is still no effective method to recover the actual state of the object from occlusions. 
Another challenge is the scalability of the algorithm. The employment of 3D CNN leads 
to an increase of cost volume. Many algorithms are limited by the size of memory, so they 
cannot be applied to large scale reconstruction. The generalization capability of the 
algorithm also needs to be addressed. AI-based algorithms need to be trained by using 
existing datasets, which are often standardized. But the diversity of architectural design 
makes it difficult to set up a dataset which concludes all kinds of design and elements. 
Therefore, the algorithm needs to have a strong generalization ability to face the non-
standardized building. 
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3.3 Blockchain-based Collaboration 
Blockchain has the potentials to resolve the problems in construction projects, e.g. poor 
regulation compliance, inadequate collaboration, and complex payment practices (Li et al. 
2019a). With the integration of BIM and IoT, blockchain can achieve a smart and 
transparent collaboration platform with advanced functions for construction management, 
e.g. automated progress monitoring (AI technology) and contract execution (smart 
contract) (Li et al. 2019a), which significantly reduces the management cost and improves 
the efficiency of processing. 

Some researchers have explored the potentials of integrating blockchain with AI in the 
AEC industry. Tang et al. (2019) proposed a framework with the integration of blockchain, 
BIM, IoT, AI, big data. In this framework, based on the data collected by BIM model and 
IoT sensors, AI algorithms can be used in automated decision making to achieve smart 
project monitoring. Blockchain can record the decisions and progress updates and ensure 
the immutability and traceability of data (Singh and Ashuri 2019). Moreover, AI was also 
considered integrated with blockchain and smart contracts in automated code compliance 
checking processes (Nawari and Ravindran 2019b). AI can extract related information 
from regulations into rules automatically, while blockchain guarantees the reliability of 
the extracted information and the activities of transferring. However, few frameworks 
have been designed and implemented in real projects (Singh and Ashuri 2019). 

Blockchain is in the early stage of development and thus has numerous future works 
to do. Despite the benefits it would bring to the AEC industry, blockchain is still facing 
some challenges. Firstly, it is difficult for blockchain and AI to be adopted rapidly by the 
traditional industry, since the existing mechanism has run well for decades or even 
hundreds of years. Secondly, there is no actual design for the integration of blockchain 
and AI technology currently, and the use case for it is even further away. Thirdly, the costs 
of transferring to the new style from the traditional mechanism are unpredictable and 
whether it is worth remains to be seen. Furthermore, most research focus on the financial 
or transaction part of the construction projects, while few researches pay attention to the 
design and construction part. This part needs high reliability and traceability of the 
information delivered to guarantee the key criteria of projects (time, cost, quality) and the 
liability distribution of involved parties. Therefore, there are still lots of work needed to 
do in the future. 

3.4 AR-based Visualization 
The development of augmented reality (AR) technology provides tools for construction 
visualization. Golparvar-fard et al. (2010) superimposed the BIM model with the site 
photos, and showed the difference between the construction progress and the planned 
progress by using color code. Zollmann (2014) developed an AR system that supports 
construction site progress monitoring and recording, but it relies on specific hardware. In 
AR4C system, exclude progress, KPI information is also showed (Ratajczak et al. 2019). 

AR technology is also used for defect detection (Lee et al. 2012). ARCam was used for 
the inspection of steel columns but still had accuracy problems. Park et al. (2013) mapped 
the BIM model to the site through a marker-based AR system to help the workers confirm 
the task, and give feedback to the manager. Lamsal and Kunichika (2019) used AR marker 
points and structure sensor SDK to register AR images. This system is used to help workers 
check their work through the iPad to prevent mistakes. 

In AR, deep learning was used for localization. Through using CNN, real-time images 
can be compared with BIM rendered images to achieve indoor localization (Ha et al. 2018). 
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An AR system based on this method was used for facility management (Baek et al. 2019). 
Localization can also be achieved by calculating camera pose. 

Fast and accurate localization is a problem for AR technology. Due to limited 
performance, AI-based methods are difficult to be applied to mobile devices (Li et al. 
2019b). The current AR system can only display limited information. In the assumption of 
this paper, AR can be used to display more construction information, such as material list, 
schedule, construction drawings, etc. Meanwhile, the current system lacks interactivity. 
When managers click on architectural elements on the screen, more details should be 
provided. 

3.5 AI-based Construction Management 

3.5.1 Progress Management 

Automated progress monitoring is achieved by using AI to compare as-built and as-
planned BIM model. Comparison methods include geometry-based methods and image-
based methods, which can also be used in combination (Han et al. 2018). 

For geometry-based progress monitoring, the first step is to align the models. This step 
can be done by aligning two point clouds, which is similar to the point cloud registration 
process. In section 3.2.2 (1), we have discussed the point clouds registration algorithm 
based on deep learning and explained its advantages. After the alignment, by performing 
different operations on the two models, progress can be identified. In this process, an 
identification threshold needs to be set for each building element, so that when the 
occupancy of the as-built model reaches a certain level, the element is recognized as 
completed (Golparvar-Fard et al. 2010). This process can be abstracted into a classification 
process in which AI technology can be used. SVM has been already used as a classifier in 
this process and has 82.89% detection accuracy (Golparvar-Fard et al. 2010).  

In addition to geometric methods, progress monitoring based on appearance can also 
be used. When the corresponding materials are identified in both models, the construction 
progress is detected (Han and Golparvar-Fard 2014). An image-based progress detection 
algorithm was proposed (Han and Golparvar-Fard 2014), which detects the progress state 
through the recognition result of the SVM classifier. Another paper also used this method 
for progress monitoring (Han and Golparvar-Fard 2015). The result showed that the 
accuracy reached 95.6% (Han and Golparvar-Fard 2015). 

For the application of AI in progress management, some challenges exist. Existing 
progress monitoring techniques rely on the compartment between as-planned models and 
as-built models, so it faces similar challenges like occlusions, noise, etc. Progress 
monitoring is not accurate when as-planned models lack details (such as lack of formwork, 
shoring, etc.). Meanwhile, the existing monitoring technology only used the low-level 
knowledge, construction sequencing and other high-level reasoning is not used. 

3.5.2 Safety Management 

Safety is always a significant topic in the AEC industry (Nath et al. 2020). Current 
research focus on various fields (Fang et al. 2020): failure of wearing Personal protective 
equipment (PPE) (Fang et al. 2018; Wu et al. 2019), unsafe behavior (Ding et al. 2018; Fang 
et al. 2019), and exposure to hazardous area (Roberts et al. 2017; Zhang et al. 2019). 
Integrating with computer vision and AI technology, vision-based approaches have 
become more popular (Nath et al. 2020). It uses cameras to record site images or videos, 
and then analyzes them by to detect unsafe conditions.  

(1) Failure of wearing PPE 
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Failure of wearing PPE has become one of the main reasons for injuries accidents on 
construction sites (Li et al. 2017). One approach uses handcrafted features extracted from 
images or videos to automatically detect the PPEs wearing, e.g. Histogram of Oriented 
Gradients (HOG) (Dalal and Triggs 2005). Fang et al. (2018) employed Faster R-CNN to 
automatically detect the non-hardhat-use (NHU) of construction workers. Despite the low 
precision for identifying the hardhat under the impact of occlusions, the recognition 
precision and recall rates were consistently over 90%. However, the heavy dependence on 
the information from upper features might do harm to the performance at different scales 
in the images. To resolve these problems, Wu et al. (2019) employed a single-stage 
approach based on the SSD framework to detect hardhats worn by workers, which uses a 
single CNN to create bounding boxes.  

(2) Unsafe Behavior 

Unsafe behavior of workers leads to around 88% of the accidents on site (Ding et al. 2018). 
Ding et al. (2018) integrated Long Short-Term Memory (LSTM) model (Hochreiter and 
Schmidhuber 1997) with CNNs to identify the potential unsafe behaviors of workers such 
as climbing a ladder. The accuracy of detecting safe and unsafe behaviors was 97% and 92% 
respectively, which exceeds the performance of other common methods like HOG by about 
10% on average. In addition, R-CNN was also employed in Fang et al. (2019) to detect 
workers traversing structural supports during construction. As a result, the precision and 
recall rates reached 75% and 90% respectively. However, occlusions and overfitting still 
influence the results figured out by the model. 

(3) Exposure to Hazardous Area 

Exposure to hazardous area is another reason for construction accidents. Some sensor-
based approaches are used, integrating with AI technology. Zhang et al. (2019) used 
smartphones to detect near-miss falls by analysing the acquired data with ANN. As a result, 
the average precision and recall rates were around 90% and 91% respectively. Concerning 
vision-based approaches, in Roberts et al. (2017), CNN was employed to identify crane 
locations in real-time for the avoidance of safety hazards to their surroundings on 
construction sites. 

Some state-of-the-art models have been developed such as Faster R-CNN, which have 
good performance in vision-based safety detection under various visual conditions of the 
construction site. However, there are still some challenges that need to be resolved. Firstly, 
large datasets are needed to train deep learning models, since existing public datasets of 
unsafe behaviors in construction are not as large as meeting the requirement of training. 
Secondly, similarly to vision-based 3D reconstruction, occlusions are also the major 
challenge that affects the performance of proposed detection models. If workers are 
partially occluded, the precision of detection reduces significantly. One possible solution 
is to install multiple cameras on the construction sites to achieve full site coverage. Thirdly, 
there is no standard to evaluate the performance of detection. As different studies use 
different training datasets with various samples or criteria, it is difficult to compare the 
performance of different methods. The lack of standard may lead to discrepancies among 
the evaluation criteria of unsafe behaviors or conditions. Therefore, a widely accepted 
standard shall be developed for the evaluation of construction unsafety detection. 
Moreover, a deeper or detailed detection is required (e.g. whether to wear PPEs correctly) 
since most methods just achieve the basic detection (e.g. whether to wear PPEs or not). In 
addition, although current methods achieve real-time safety management, it may be not 
enough to prevent accidents. There is a need for the models that can predict these unsafe 
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conditions in the early time and the alarming mechanism that reflect the predictions to 
related personnel effectively.  

3.5.3 Quality Management 

AI-based image detection technology is proposed to replace manual detection. According 
to the different objects, defect detection can be classified as sewer detection (Cheng and 
Wang 2018), tunnel detection (Makantasis et al. 2015), road detection (Zhang et al. 2017), 
building detection (Perez et al. 2019), etc.  

CNN is one of the networks which has been used in detection. Perez et al. (2019) used 
CNN for building detection, which could identify mould, ruff, and stain. A new algorithm 
CrackNet, which uses CNN without pooling layers, was proposed to detect asphalt 
pavement cracks (Zhang et al. 2017). Compared with the traditional SVM algorithm, the 
accuracy and F-measure of this algorithm are better. A tunnel detection technique used 
CNN to extract defect characteristics and classify them by MLP (Makantasis et al. 2015). 
The detection rate of this method reached 89%, better than ANN, SVM, KNN, and Ctree. 

Faster R-CNN is another popular algorithm, which solves the generation of region 
proposals (Ren et al. 2015). Cheng and Wang (2018) used it to detect four types of defects 
in sewer. Cha et al. (2018) used Faster R-CNN to identify concrete and steel. Compared 
with the traditional CNN method, this method has a better performance in locating defects. 
To sum up, deep learning has shown good performance in defect detection. 

AI-based defect detection is facing the challenge of lacking a large database for training. 
Meanwhile, a single quality recognition model can only detect limited types of quality 
defects. There is no generic model that can detect all types of defects simultaneously. 
What’s more, prior technologies are image-based which means they cannot be applied to 
recognize defects that are not visible. 

3.5.4 Contract Management 

Contract management is defined as the process that manages the creation and execution 
of contracts efficiently (Chen et al. 2019b), which is complex since it involves various 
stakeholders (e.g. contractor, client, engineers, government, etc.). Smart contract, a 
computer protocol that aims to enforce contracts in a digital way, makes automated 
contract execution possible (Di Giuda et al. 2020). For example, a term of contract can be 
written in code and automatically executed by linking related records from government 
agencies (e.g. government regulations) to blockchain standards (Mason 2017). In addition, 
once the defined obligations have been completed, the payment function of smart contracts 
will be executed automatically to pay related contractors for the completed work (Di Giuda 
et al. 2020). Even further, AI can be used to develop an engine that helps people make 
decisions based on the information received. For example, the AI engine can decide 
whether the project continues under different weather conditions based on information 
from meteorological department and related contract terms. However, there are some 
limitations of the application of smart contracts, e.g. the inherent security vulnerabilities 
of the input of evidence of fulfilment, machine-readable script of contract that should be 
able to be reviewed and verified by experts (Nawari and Ravindran 2019a). 

4 CONCLUSIONS 
This paper reviews techniques that contribute to the development of next generation AI-
based platform and the revolution of construction management field. Nowadays, the 
application of AI technology to various practices in the AEC industry brings convenience 
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and improve efficiency for the management work during the real-life construction projects. 
With the integration of AI, big data, BIM, AR/VR, and blockchain, the platform has great 
potentials to lead a new revolution in the AEC industry. The automated generation of 3D 
as-planned and as-built models significantly reduces the time and costs required for 
drawings and model production, and thus decreases the risks of delay and cost overruns. 
With the integration of blockchain technology, the AI-based platform can achieve an 
immutable and traceable documentation mechanism, which resolves the problems of lack 
of trust in traditional construction projects. The application of AR technology helps 
develop immersive interaction between real projects and stakeholders (e.g. clients, 
contractors, engineers), which makes online management more effective. In construction 
management field, AI brings a new direction for achieving convenient and efficient 
management of progress, safety, and quality in construction projects, especially for those 
that are on the remote sites. Under the support of blockchain and AI, automated contract 
execution can be achieved, including automated payment, real-time updates of referred 
government regulations, contract execution under unexpected weather, and etc. As more 
and more studies focus on this field, AI technology shows its vitality and broad prospects 
in the next generation collaboration. 

However, existing platforms are still in its early stage and more studies are needed to 
make each required technique meet the requirements in the real-life construction projects. 
The large dataset for training is a common problem for the deep learning application in 
construction projects. In addition, the expensive computing costs and the low ability of 
generalization of the deep learning models requires future work to improve. The current 
AI-based As-planned BIM model generation methods cannot integrate schedule, which is 
the key to the progress monitoring. For as-built BIM model generation, there is a need for 
an end-to-end algorithm to efficiently achieve the production. Besides, As-built BIM model 
generation and progress management are both facing the challenge of occlusions and noise. 
The equipment and workers may block the construction elements behind them and they 
often move instead of being still. This situation reduces the accuracy of the system. Similar 
problems also occur in safety and quality management. Blockchain-based collaboration is 
still a framework, thus more work needs to be done. Localization is still a problem for AR, 
and it is difficult for current mobile devices to run AI algorithms to locate. For safety 
management and quality management, lacking effective datasets that have diverse data 
limits the performance, and it is hard to create a uniform dataset that suits all conditions. 
Besides, a widely accepted standard is required for the performance evaluation of detection. 
An effective alarming mechanism shall be established to reflect the detected results to 
related personnel. Finally, for AI in the AEC industry, the fragmentation of knowledge 
remains unresolved. A platform for integrating multiple technologies is still needed to 
achieve the "end-to-end" construction management. 
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